
Improving Students’ Learning in Software Engineering
Education through Multi-Level Assignments
CHRISTIAN KÖPPE
HAN University of Applied Sciences, Arnhem/Nijmegen, the Netherlands
and
LEO PRUIJT
HU University of Applied Sciences, Utrecht, the Netherlands

Assignments and exercises are an essential part of software engineering ed-
ucation. It usually requires a variety of these assignments to cover a desired
wide range of educational objectives as defined in the revised Bloom’s tax-
onomy. But such a variety has inherent problems, e.g. that students might
not see the connections between the assignments and find it hard to gener-
alize the covered concepts.

In this paper we present the educational design pattern MULTI-LEVEL

ASSIGNMENT which addresses these problems. It enables the assignment
designer to incorporate a variety of educational objectives into a single as-
signment by including the concepts on multiple knowledge and process lev-
els. The description as educational design pattern and the provided three
implementation examples make this approach directly applicable for other
software engineering educators.

Categories and Subject Descriptors: K.3.2 [Computers and Education]:
Computer and Information Science Education —Computer science educa-
tion

General Terms: Design, Education, Software Engineering Assignment

Additional Key Words and Phrases: Educational Patterns, Design Princi-
ples, Revised Bloom’s Taxonomy

ACM Reference Format:
Christian Köppe and Leo Pruijt. 2014. Improving Students’ Learning in
Software Engineering Education through Multi-Level Assignments. Pro-
ceedings of Fourth Computer Science Education Research Conference,
CSERC14, Berlin, Germany, 6 pages.

Please note: This is the author’s version of the work. It is intended for per-
sonal use, not for redistribution.
Author’s addresses: christian.koppe@han.nl, leo.pruijt@hu.nl
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CSERC ’14, November 05 - 06 2014, Berlin, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3347-4/14/11 $15.00
http://dx.doi.org/10.1145/2691352.2691357

1. INTRODUCTION

Software Engineering (SE) comprises different disciplines and ar-
eas of knowledge like Software Requirements, Software Design,
Software Architecture, Software Construction, or Quality Assur-
ance. These are described in the Software Engineering Body of
Knowledge (SWEBOK) [IEEE Computer Society 2004]. Software
engineers need to have knowledge of these disciplines as this
knowledge is essential for their professional performance. Aca-
demic SE programs intend to support students’ acquisition of this
knowledge. The desired level of knowledge hereby varies and is
restricted by the educational setting of undergraduate or graduate
programs due to limited available time for topic coverage, staff
knowledge, institutional research areas, and other factors. There-
fore, academic institutions have to make decisions on what to in-
clude in a curriculum and on what level to include it.

The coverage of the chosen knowledge areas is translated into
a curriculum and the elements of the curriculum are mapped on
educational objectives by curriculum- and course-designers. These
objectives can be described according to the revised Bloom’s tax-
onomy [Anderson and Krathwohl 2001], which is also applicable
in computing education [Thompson et al. 2008]. The knowledge di-
mensions are Factual, Conceptual, Procedural, and Metacognitive
and the cognitive process dimensions are Remember, Understand,
Apply, Analyze, Evaluate, and Create. These knowledge and pro-
cess dimensions form in combination a two-dimensional taxonomy
table (see Table I for an example) that is helpful for designing and
evaluating the content of courses and the included activities.

According to the curriculum objectives it is sometimes sufficient
if the students just recall or recognize factual knowledge of some
knowledge areas (rote or shallow learning). But as educators, we
strive to engage the students in active cognitive processing of pro-
cedural or conceptual knowledge too (meaningful or deep learning)
[Mayer 2002].

To incorporate a variety of cognitive processes in a course, dif-
ferent activities are used in the form of exercises and assignments.
This “Learning Through Practice” [Laurillard 2012] often extends
some more narrative approaches, where students have to acquire
factual and basic conceptual knowledge through reading, listen-
ing, or watching. The assignments and exercises are related to spe-
cific educational objectives—the cells in the taxonomy table as de-
scribed above. They also cover a variety of topics, e.g. a stopwatch,
a music collection administration system, a board-game engine or
an elevator system. In this paper we name these specific topics the
assignment domain.

In our experience, there often is still a distinction between the
factual, conceptual, and procedural knowledge and the assignments
and exercises address varying but distinctive cognitive processes.
Such assignments cover only sub-parts of the taxonomy and are

2 • C. Köppe and L. Pruijt

therefore limited in their individual contribution to holistic mean-
ingful learning. A mix of different assignments covering differ-
ent aspects of learning helps with solving this problem, but re-
quires many assignments. These would run in parallel or sequential,
which makes it harder for the students to intuitively see the connec-
tions between the covered concepts. Another option for improv-
ing instruction is to raise the learning targets [Raths 2002], which
could be realized by a broader coverage of cognitive processes and
knowledge categories in a single assignment.

In this paper, we present a way for integrating a variety of cog-
nitive processes and knowledge categories in a single assignment.
The main idea is to include the concepts not only on the procedural
level, important for the realization of the assignment or exercise,
but to also include them on the conceptual level as assignment do-
main. Both authors have applied this approach multiple times, ex-
amples (which are described in more detail later) are a business rule
generator, a software architecture compliance checking tool, and a
design pattern selector.

For the description of the approach, we decided to use the for-
mat of an educational design pattern. This offers a few advantages
compared to more traditional practice reports or theoretical descrip-
tions [Laurillard 2012] and is a valid scientific format for formulat-
ing a theory about a concrete experience [Kohls and Panke 2009].
Christopher Alexander states that “Each pattern describes a prob-
lem which occurs over and over again in our environment, and then
describes the core of the solution to that problem , in such a way
that you can use this solution a million times over, without ever do-
ing it twice” [Alexander et al. 1977]. Patterns have been adapted in
the field of (CS) education for nearly 20 years now, and many ed-
ucational design patterns have been documented and proven to be
valuable (see e.g. [Goodyear and Retalis 2010; Köppe 2011; 2013;
Larson et al. 2008; Laurillard 2012; Pedagogical Patterns Edito-
rial Board 2012]). Our work extends this body of knowledge by
proposing the MULTI-LEVEL ASSIGNMENT pattern.

The rest of the paper is organized as follows: In Section 2 we
describe the background of the pattern and its mining. The pattern
format and the pattern itself are presented in Section 3. This is fol-
lowed by a discussion of the described approach and related work
(Section 4). The final section concludes the paper.

2. PATTERN SOURCE AND MINING

Design patterns are usually discovered in the process of pattern
mining, the main task hereby is to “expose the invariant structure
and discriminate it from the surface structure (the non-essential fea-
tures)” [Kohls and Panke 2009]. There are different approaches to
pattern mining, whereby inductive inference—the observation and
analysis of good examples [Alexander 1979]—is probably the most
common one and typical for qualitative research [Kohls and Panke
2009]. This approach was also applied in this work.

Two student assignments were designed for 2nd year and 3rd
year students of an undergraduate computer science program with
a focus on software engineering at the HU University of Applied
Sciences. They lasted 10 and 20 weeks, respectively. Both assign-
ments will be shortly introduced now and described in more detail
in the examples sections of the pattern description.

The first assignment was the design and realization of a Business
Rule Generator, a tool for maintaining business rules and gener-
ating them towards different target languages, like Oracle PL/SQL
(in the form of database triggers and functions). This tool also in-
cluded business rules as part of the requirements.

The second assignment was an Architecture Compliance Check-
ing Tool. This tool provides facilities to specify a logical architec-

ture including elements like layers or components and rules related
to them like “is not allowed to use”. It then supports analyzing the
source code of the system that is supposed to follow the defined
architecture, mapping of the physical elements to the logical ones,
and finally to check the compliance of the source code regarding
the defined rules. The tool itself was developed by a group of 25
students, divided into 6 groups. This required a carefully designed
software architecture, including elements, relations, and rules on
these relations, many of these to be determined by the students
themselves.

Both assignments had worked well according to the perception
of the instructors and also the final student grades and student eval-
uations. Both had one aspect in common: the concepts the students
had to learn and were required to apply in the assignments were
also the domain of the application to be built—the students had to
apply them on both procedural and conceptual level using differ-
ent cognitive processes. This is the basic invariant structure—the
good practice we wanted to document—and forms the base for the
proposed pattern MULTI-LEVEL ASSIGNMENT.

To evaluate the quality of the pattern and to assess the degree of
corroboration we applied the pattern for the design of a third assign-
ment, a Design Pattern Selector. This assignment is described too
as example in the pattern and the conscious application of MULTI-
LEVEL ASSIGNMENT as educational design pattern is discussed in
Section 4.

3. PATTERN DESCRIPTION

In the following sections we describe the identified pattern. We
use an adapted version of the format as introduced by Christopher
Alexander et al. [Alexander et al. 1977] and provide headings for all
sections so that they can be easier identified. The description starts
with the context, which explains in what conditions the described
solution solves the problem. This is followed by the problem it-
self, whereby the core of the problem is highlighted in bold font.
Next come the forces that shape and refine the problem. They help
to deeper understand the nature of the problem and lead towards
the solution, which is presented next. Again, bold font is used to
highlight the core of the solution. The next section explains how
the solution can be implemented, followed by detailed descriptions
of three known uses/examples. The final section states the conse-
quences of applying the pattern solution, both positive and negative.

Pattern: MULTI-LEVEL ASSIGNMENT

Context. You want to design an assignment that supports mean-
ingful learning of specific software engineering concepts. You al-
ready introduced some basic factual, conceptual, and procedural
knowledge on the concepts.

Problem. Student learning is suboptimal when assignments
can be completed by merely applying techniques and concepts
without requiring a deeper conceptual understanding of them.
In that case the students might learn less than they could have.

The deep understanding of a concept requires knowledge and
skills at different levels, but different levels often require differ-
ent educational methods. The procedural level—students can apply
the concepts—is often implemented by giving the students work
assignments, e.g. programming a certain tool, gathering and doc-
umenting requirements, or defining the architecture of a complex
system.

Forces. Students should apply the techniques they have to learn,
but often do that through copying and pasting from existing solu-

Improving Students’ Learning in Software Engineering Education through Multi-Level Assignments • 3

Cognitive Process
Knowledge 1. Remember 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create
A. Factual x x (x)
B. Conceptual x x (x) x x
C. Procedural x x x (x)
D. Metacognitive

Table I. : Mapping of the educational objectives of MULTI-LEVEL ASSIGNMENT to the revised Bloom’s taxonomy
[Anderson and Krathwohl 2001]

tions and adjusting these so that they fulfill the requirements. Even
though the resulting solutions might be sufficient, this often does
not require the desired deeper understanding of the concepts we
want the students to learn.

Trial and error, an approach often used by students, can lead to
sufficient results too, but does not necessarily require conscious
thinking about and awareness of the applied concepts. If students
also experience this trial and error approach as sufficient, they are
not supported in gaining a deeper understanding of the concepts.

Assignments often require one concrete application of concepts,
which makes it hard to generalize these concepts for the students.

Extending assignments with exercises that also explicitly cover
cognitive processes regarding the conceptual knowledge leads to
parallel or sequential activities, which makes it harder for the stu-
dents to see the connection between the procedural and conceptual
parts of the concepts.

Solution. Therefore: Make the concepts the students have to
study (part of) the assignment domain itself and not only part
of the techniques they have to apply in order to realize the as-
signment.

This way the students have to apply the concepts when realizing
the assignment and also have to understand the concepts on a higher
level as part of the application domain. This could be even more
improved by having the students also analyze (parts of) this domain
as part of the requirements gathering and make them using some
realistic data for testing and demonstrating purposes.

The following educational objectives (including their corre-
sponding cells in Table I) are tackled by such an assignment (”the
students are able to”):

—Remember previously taught essential knowledge of all cate-
gories (A1 to C1).

—(optional) Analyze the domain of the assignment and use this as
basis for the domain model (B4; also A4 if known examples are
used as basis for the analysis).

—Interpret and classify the concepts in the domain model (B2) and
use specific instances as sample data for the application (A2).

—Evaluate the domain model before it’s used as basis for the de-
sign of the application (B5).

—Apply the procedural knowledge for the realization of the con-
cepts in the assignment (C3), which requires an understanding of
how to apply them (C2).

—Plan and optionally think of alternative ways of implementing
the product and applying the concepts to be learned (C6).

—Implement the assignment which certainly requires the creation
of some larger product that contains the concepts (B6).

The broad coverage of educational objectives shows that indeed a
higher learning target can be reached by using MULTI-LEVEL AS-
SIGNMENT. According to Raths [Raths 2002] this can also be inter-
preted as evidence for improved instruction. Please note: Metacog-

nitive knowledge and its related cognitive processes are not covered
with multi-level assignments.

Implementation. One important part is to identify upfront the
concepts you want the students to learn on different levels. Setup
the assignment so that (a) the concepts (or the most important parts
of them) are (part of) the domain of the assignment and have to
be described as domain model and (b) that the students also have
to apply the concepts on a procedural level. Making the concepts
part of the domain implies that the functional requirements of the
assignment are in line with how the concepts would be applied in
“real” projects. In most cases this could be an administration tool
for specific instances of the concepts, like a software requirements
administration (that is itself defined by requirements) or an archi-
tecture administration/visualization tool (that has itself an archi-
tecture). Another option is a generation tool, that generates con-
crete instances of previously defined implementation-independent
instances of concepts, e.g. a business rule generator.

As described in the solution part, the learning target can be
broadened by adding the cognitive process of analyzing to the as-
signment. In that case require the students to analyze (parts of) the
assignment domain—including the concepts to be learned—mostly
by themselves as part of the functional requirements. You may pro-
vide an initial version as starting point, mainly for triggering the
thought process and making the first steps easier.

The assessment of such an assignment is similar to that of assign-
ments with other domains. Of main importance is that the domain
model has to be correct and consistent, which means for a MULTI-
LEVEL ASSIGNMENT that the conceptual knowledge is much more
emphasized than in typical software engineering assignments.

Consequences. Even though the students still can copy&paste
and adjust an existing solution when realizing the assignment, they
are also forced to have to work on and with the concepts on a
different—the conceptual—level.

Applying trial and error might still work for the technical real-
ization of the assignment, but it does not help with the conceptual
component of the assignment: the definition and realization of the
domain does not allow trial and error.

As the students are exposed to the concepts they are applying
on a conceptual level too, it probably will be easier for them to
recognize the generic aspects of them.

In some cases, like interdisciplinary assignments or when involv-
ing industry partners, pre-determining the assignment domain does
not work as it does not fit the needs of the involved stakeholders. In
such cases the pattern is not applicable.

There is also the chance that the students would favour another
assignment domain which is closer to their interests, like e.g. a spe-
cific game or a gym administration.

Example: Business Rule Generator. In the second year of the
bachelor program computer science at the HU University of Ap-

4 • C. Köppe and L. Pruijt

Fig. 1: Student system example: Business rule definition (the selection of a specific business rule type implies specific business rules to be
checked for this type, e.g. a limited set of available operators and allowed selections of attributes)

plied Sciences, we teach the students to recognize, specify, classify
and implement business rules as part of a course on Software Re-
quirements. The Business Rules Group [The Business Rules Group
2013] defines a business rule (from the information system perspec-
tive) as “a statement that defines and constraints some aspect of a
business. It is intended to assert business structure, or to control
or influence the behavior of the business.” In our program, we in-
troduce the basics of business rules, but focus thereafter on data
rules and how they are classified according to the BCDM frame-
work [Boyd 2001].

The project assignment was developed in cooperation with a
software development company specialized in Oracle Technology.
It stimulates the students to think and work with business rules at
both procedural and conceptual level. The students are instructed
to design and build a business rule generator. Their resulting gen-
erator should allow a software developer to enter the functional de-
tails of a business rule via the GUI component of their application,
which means that business rules are the assignment domain. On
demand the rule should be transformed automatically, by the gen-
erator component, to a database constraint or database trigger in the
SQL-variant of a pre-selected database system.

Functional requirements are provided to the students, including
the details of nine types of rules and examples of the rule types with
related code examples to implement the rule as database constraint
or trigger. Before the students start building the generator, they have
to design a conceptual model that answers the requirements. Fur-
thermore, they need to specify and implement an accompanying
set of business rules for their generator, constraining the data to be
entered into their system—the procedural part of the pattern solu-
tion. By doing so, the students improve their analytical skills and
develop a meta model of the business rule domain, which adds to
their knowledge and is the result of the pattern application.

Figure 1 shows a screenshot of one of the student systems. All
metadata relevant for specific business rule types have to be defined

through the tool including business rules constraining them. These
rules then have to be checked when entering specific business rules
for later generation.

Example: Architecture Compliance Checking Tool. Software ar-
chitecture is an important topic within our bachelor program com-
puter science. At the end of the second year, preceded by several
analysis and design modules, an introduction in software architec-
ture is provided, and in the third year we offer a module Advanced
Software Architecture and a related, large project assignment. The
basics of software architecture, modular design, layers, compo-
nents and architectural patterns are discussed at first, with the fo-
cus on the design of semantically rich modular architectures [Pruijt
et al. 2013]. Next, to develop the practical skills, assignments are
made in which the students classify different types of responsibil-
ity, design layers and components at the logical and physical level,
and design application scenarios in accordance to the architectural
models and/or in accordance to architectural patterns.

The third-year project assignment invites the students to think
and work with software architecture at different levels. The assign-
ment focuses on tools to support checks on architecture compli-
ance; “a measure to which degree the implemented architecture
in the source code conforms to the planned software architecture”
[Knodel and Popescu 2007]. Previous to the assignment, the stu-
dents have to identify requirements to this type of tools and use and
test different tools. Next, the students work on the design and de-
velopment of a new open source software architecture compliance
checking tool. A domain model is used to identify and relate the
most important concepts of architecture compliance including dif-
ferent software architecture elements, their relations and rules ap-
plying on these relations. Furthermore, a component model is used
to identify and relate the functional parts of the tools, to allocate
the domain concepts to these parts, and to divide the work over (up
to six) student teams. Each team is responsible for one component
and the teams have to negotiate the requirements with regard to the

Improving Students’ Learning in Software Engineering Education through Multi-Level Assignments • 5

provided services, as well as the implementation details. That way
the students had to apply the same software architecture concepts
for building the tool that also are part of the domain of the tool,
which is the core of the pattern.

At the end of the semester, one-day architecture compliance
checks were organized at the sites of software development orga-
nizations. On such a day, a professional application was analyzed
with the help of the tool, and checks were performed on the confor-
mance to the software architecture. At the end the students had to
present suggestions for improvement regarding the actual realiza-
tion of the software architecture in the analyzed applications. These
suggestions were well perceived by the present software architects
of the companies and demonstrated a high conceptual understand-
ing of the architectural concepts and their realizations in applica-
tions by the students. We interpret this as indication that the pattern
application indeed was successful.

Example: Design Pattern Selector. We have applied the pattern
for the design of an assignment for the course “Patterns & Frame-
works”, part of the second year of an undergraduate computer sci-
ence program with a focus on software engineering. The main re-
quirement for the assignment was to implement a pattern selector
and a pattern editor in Java. The students therefore had to apply
design patterns for the design of the tool while the (same) design
patterns also formed the domain of the tool. This reflects the core
of the pattern solution.

In that example we went through all educational objectives as
described in the pattern solution and how they were included in the
assignment. This helped us to consciously check the coverage of
objectives and demonstrates the practical support the pattern solu-
tion offers for assignment design. Based on this check we decided
to add some more focus on specific educational objectives, namely
understanding and analyzing conceptual knowledge. We did so by
requiring that the tool should be usable for all domains of design
patterns (instead of only the GoF-patterns as presented in [Gamma
et al. 1994]) through the usage of generalized pattern description
sections (context, problem, forces, etc. instead of intent, motiva-
tion, etc.). The assignment furthermore included that the students
had to fill their repository with at least ten GoF-patterns. The stu-
dents hereby had to interpret and classify the pattern parts by them-
selves and to organize these parts in the given structure.

A set of extra functional and non-functional requirements was
given that was related to typical problems addressed by specific
GoF design patterns. An example is that one could add patterns on-
the-fly while leaving the selection user interface open, and that the
selection lists automatically are updated after adding a new pattern
or a new context (solvable with the OBSERVER pattern). Another
example is that the repository of patterns that one builds up should
be exportable and importable in different formats, and these for-
mats should be easy to add (solvable with the FACTORY METHOD
and STRATEGY patterns).

Finally, the requirements included that the tool explicitly has to
support the method of how patterns should be selected prior to ap-
plying their solution, which is an application of the educational pat-
tern CONTEXT, PROBLEM, AND CONSEQUENCES FIRST [Köppe
2013]. One should first check if the context the pattern describes
and the design context are sufficiently matching. Then the students
have to analyze what the actual design problem is that they want to
solve. Next, the problem that needs to be solved should be matched
with the problems that can occur in the selected context (a list
generated from the pattern descriptions). Finally, before present-
ing the pattern solution, one should first carefully look at the con-

sequences the application of the pattern solution has to trade off
benefits against liabilities.

4. DISCUSSION

An important part of being “Reflective Practitioners” comprises the
search for improvements of our own teaching, and the form of ed-
ucational design patterns offers a valid way of doing so [Lauril-
lard 2012]. Describing our approach as educational design pattern
helped us to consciously reflect on and think of the different aspects
of the approach in a structured and detailed way.

The described pattern was interpreted as hypothesis and we eval-
uated the pattern by applying it a for a third time (see the third ex-
ample in the pattern description). This conscious application raised
the understanding of the concepts, in that example the understand-
ing of design patterns and how to use them correctly, by addressing
the concepts on different knowledge levels and requiring a vari-
ety of cognitive processes as described in the pattern solution. The
good students’ results of the assignments (not presented in this pa-
per), both for the domain model parts and the realization parts of
the assignments, indicate that the proposed pattern works. This is
also supported by the students’ evaluations of the courses in general
and specific feedback on the assignments

There are other implementation instances possible, like gather-
ing requirements for a requirements gathering tool, following a cer-
tain software process to develop a process support tool (where one
can define roles, responsibilities, tasks, etc.), or to build and test a
testing support tool.

Related Work

Guided Exploration [Köppe and Rodin 2013] is another way of ad-
dressing the issue that students use procedural knowledge without
understanding the underlying concepts. The assignment description
hereby consists of descriptions of the concepts the students have to
apply in order to successfully finish the assignment instead of fo-
cusing on the required functionality of the product.

Some already described pedagogical patterns are related to
MULTI-LEVEL ASSIGNMENT. ABSTRACTION GRAVITY - FROM
HIGH TO LOW [Pedagogical Patterns Editorial Board 2012] ad-
dresses the issue of presenting concepts at different abstraction lev-
els. It could be used for presenting the factual knowledge required
for MULTI-LEVEL ASSIGNMENTS. EXPERIENCING IN THE TINY,
SMALL, AND LARGE [Pedagogical Patterns Editorial Board 2012]
adresses learning of concepts on different levels, but requires mul-
tiple steps (assignments).

Choosing exercises that cover simultaneously multiple ideas
or topics—as opposed to multiple abstraction levels of the same
concepts—is the core of a MULTI-PRONGED ATTACK [Pedagog-
ical Patterns Editorial Board 2012]. Similar to this is ONE CON-
CEPT - SEVERAL IMPLEMENTATIONS [Pedagogical Patterns Ed-
itorial Board 2012] which emphasizes the use of different imple-
mentations of an abstract concept as examples.

5. CONCLUSION

In this paper we reported on a common issue in the design of as-
signments: the distinction between acquisition and application of
procedural and conceptual knowledge. To address this issue, we
proposed the educational design pattern MULTI-LEVEL ASSIGN-
MENT, which was mined from two successful assignment designs.
The variety of educational objectives—as shown in the mapping
to the revised Bloom’s taxonomy—addressed in one assignment,

6 • C. Köppe and L. Pruijt

increases the number of learning targets and improves students’
learning.

Using the pattern format helped us to explore all relevant parts of
the assignment design in more detail and describing it in a reusable
way. We—as reflective practitioners—experienced this as helpful.
We applied this pattern for designing a third assignment and evalu-
ated its applicability and added value through conscious application
as design pattern. The result was satisfying: the pattern provided
good guidance for the design and observations of discussions be-
tween students who worked on the assignment showed that the stu-
dents were indeed thinking and talking about the concepts at both
conceptual and procedural level. This was similar to the results of
the first two assignments where this pattern was applied. This ob-
servation is based on the teachers perceptions and still lacks a suf-
ficient evaluation.

As stated earlier, we plan to apply MULTI-LEVEL ASSIGN-
MENTS in other courses too. This promotes our striving for sup-
porting meaningful learning of our students and will be part of fu-
ture work. We also encourage other educators to apply this pattern
and to share their experiences with us.

Acknowledgements

We mostly want to thank all students who took the assignments
based on the described design pattern and helped us to improve it.
We also thank all reviewers of earlier versions of this work for their
valuable feedback.

REFERENCES

Christopher Alexander. 1979. The Timeless Way of Building (later prin ed.).
Oxford University Press, New York.

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977. A
Pattern Language: Towns, Buildings, Construction. Oxford University
Press.

Lorin W Anderson and David R Krathwohl. 2001. A taxonomy for learn-
ing, teaching, and assessing: A revision of Bloom’s taxonomy of educa-
tional objectives. Addison Wesley Longman, Inc, New York. 352 pages.
DOI:http://dx.doi.org/10.1207/s15430421tip4104\ 2

L.L. Boyd. 2001. BCDM RuleFrame - the business rule implementation
that saves you work. In ODTUG Business Rules Symposium. Oracle Cor-
poration, iDevelopment Center of Excellence.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994.
Design Patterns: elements of reusable object-oriented software. Addison-
Wesley, Boston, MA.

Peter Goodyear and Simeon Retalis (Eds.). 2010. Technology-
Enhanced Learning: Design Patterns and Pattern Languages.
Sense Publishers. 330 pages. http://www.amazon.com/
Technology-Enhanced-Learning-Patterns-Pattern-Languages/dp/
9460910602

IEEE Computer Society. 2004. Software Engineering Body of Knowledge
(SWEBOK). IEEE Computer Society. http://www.swebok.org/

Jens Knodel and Daniel Popescu. 2007. A Comparison of Static Ar-
chitecture Compliance Checking Approaches. In Working IEEE/IFIP
Conference on Software Architecture (WICSA’07). IEEE, 12–21.
DOI:http://dx.doi.org/10.1109/WICSA.2007.1

Christian Kohls and Stefanie Panke. 2009. Is that true...? - Thoughts on
the epistemology of patterns. In Proceedings of the 16th Conference on
Pattern Languages of Programs - PLoP ’09. ACM Press, New York, New
York, USA. DOI:http://dx.doi.org/10.1145/1943226.1943237

Christian Köppe. 2011. Continuous Activity - A Pedagogical Pattern for
Active Learning. In Proceedings of the 16th European Conference on
Pattern Languages of Programs - EuroPLoP ’11, Vol. 2011. ACM Press,
Irsee, Germany. DOI:http://dx.doi.org/10.1145/2396716.2396719

Christian Köppe. 2013. A Pattern Language for Teaching Design Pat-
terns. Transactions on Pattern Languages of Programs 3 (2013), 24–54.
DOI:http://dx.doi.org/10.1007/978-3-642-38676-3\ 2

Christian Köppe and Rick Rodin. 2013. Guided Exploration: An Induc-
tive Minimalist Approach for Teaching Tool-related Concepts and Tech-
niques. In Proceedings of the 3rd Computer Science Education Research
Conference, CSERC’13. ACM, Arnhem, Netherlands. http://koeppe.nl/
publications/CSERC2013\ Koppe.pdf

Kathleen A. Larson, Frances P. Trees, and Scott D. Weaver.
2008. Continuous feedback pedagogical patterns. In Proceed-
ings of the 15th Conference on Pattern Languages of Pro-
grams - PLoP ’08. ACM Press, New York, New York, USA.
DOI:http://dx.doi.org/10.1145/1753196.1753211

Diana Laurillard. 2012. Teaching as a Design Science: Building Peda-
gogical Patterns for Learning and Technology. Routledge, Oxon, UK.
http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=ED529967

Richard E. Mayer. 2002. Rote Versus Meaningful Learning. Theory Into
Practice 41, 4 (2002), 226–232.

Pedagogical Patterns Editorial Board. 2012. Pedagogical Patterns: Advice
for Educators. Joseph Bergin Software Tools, New York, NY, USA. 230
pages.

Leo Pruijt, Christian Köppe, and Sjaak Brinkkemper. 2013. Architecture
Compliance Checking of Semantically Rich Modular Architectures: A
Comparison of Tool Support. In Proceedings of the 29th International
Conference on Software Maintenance, ICSM’13. IEEE Computer Society
Press, 220–229. DOI:http://dx.doi.org/10.1109/ICSM.2013.33

James Raths. 2002. Improving Instruction. Theory Into Practice 41, 4
(2002).

The Business Rules Group. 2013. Defining Business Rules. (2013). http:
//www.businessrulesgroup.org

Errol Thompson, Andrew Luxton-Reilly, Jacqueline L. Whalley, Minjie Hu,
and Phil Robbins. 2008. Bloom’s taxonomy for CS assessment. In Pro-
ceedings of the tenth conference on Australasian computing education.
Australian Computer Society, Inc., 155–161. http://dl.acm.org/citation.
cfm?id=1379249.1379265

