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Abstract—Architecture Compliance Checking (ACC) is useful 

to bridge the gap between architecture and implementation. ACC 

is an approach to verify conformance of implemented program 

code to high-level models of architectural design. Static ACC 

focuses on the modular software architecture and on the 

existence of rule violating dependencies between modules. 

Accurate tool support is essential for effective and efficient ACC. 

This paper presents a study on the accuracy of ACC tools 

regarding dependency analysis and violation reporting. Seven 

tools were tested and compared by means of a custom-made test 

application. In addition, the code of open source system Freemind 

was used to compare the tools on the number and precision of 

reported violation and dependency messages. On the average, 74 

percent of 34 dependency types in our custom-made test software 

were reported, while 69 percent of 109 violating dependencies 

within a module of Freemind were reported. The test results 

show large differences between the tools, but all tools could 

improve the accuracy of the reported dependencies and 

violations. 

Index Terms—Software architecture, modular architecture, 

architecture compliance, architecture conformance, static 

analysis, dependency analysis, dependency detection, accuracy 

I. INTRODUCTION 

Software architecture is of major importance to achieve the 

business goals, functional requirements and quality 

requirements of a system. However, architectural models tend 

to be of a high-level of abstraction, and deviations of the 

software architecture arise easily during the development and 

evolution of a system [1]. Architecture Compliance Checking 

(ACC) is an approach to bridge the gap between the high-level 

models of architectural design and the implemented program 

code, and to prevent architectural erosion [2]. Knodel and 

Popescu defined architecture compliance as “a measure to 

which degree the implemented architecture in the source code 

conforms to the planned software architecture” [3]. The terms 

architecture compliance and its synonym architecture 

conformance are both used in literature. 

Many tools and techniques are available to analyze a 

software system, and to reconstruct, visualize, check, or 

restructure its architecture [4]. In our study, we focus on tools 

supporting static ACC, which analyze software without 

executing the code.  These tools, which we label as static ACC-

tools, focus on the modular structure in the source code, and 

identify structural elements, such as packages and classes. In 

addition, they analyze use-relations between these elements, 

such as an invocation of a method or access of an attribute. To 

support ACC, the tools provide facilities to: a) define modular 

elements and rules restricting these elements and their 

relationships; b) check the compliance to these rules; and c) 

report violations to these rules. For example, a tool should 

report a violation if a method-call in the code from class A to B 

corresponds with a dependency from module X to module Y in 

the planned architecture, when a rule exists which forbids such 

a dependency. 

Although ACC-tools predominantly check for the same 

kind of inconsistencies between the implemented and intended 

modular architecture, only a few studies have compared these 

tools. Previous studies have identified large differences in 

terminology and approach [3, 5, 6]. For instance, the study of 

Passos et al. [5] identified and evaluated three techniques of 

static architecture checking.  Furthermore, they explored the 

effectiveness and usability of three supporting tools by 

executing tests, based on a simple system with a basic 

architecture. Our research follows Passos et al. We aspire to 

contribute to the evolution of ACC, motivated by the notion 

that the adoption of ACC-tools is still limited [2, 7]. Further 

research is necessary to advance and improve current methods 

and tools [8]. We focus on the effectiveness of ACC, since it is 

of primary interest to users and researchers. The “Quality in 

use model” of ISO 25010 [9] defines effectiveness as 

“accuracy and completeness with which users achieve specified 

goals”. Starting from this definition, relevant research 

questions arise. Do static ACC-tools provide complete support 

for architectural conformance checks? Do such tools perform 

accurate checks? 

In this study, we focus on the second question, scoped to 

the research question: How accurate do ACC-tools report 

dependencies and violations against dependency rules? 

Accuracy is relevant, since emerging trends are to use 

source/code analysis throughout the coding process [10], and to 
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extract and update architectural views continuously [8]. 

Although static analysis is theoretically not difficult, the 

complexities of modern programming languages significantly 

impede source code analysis [10]. But, unlike performance, 

accuracy of ACC does not receive much attention. The 

accuracy of dependency and violation reporting is omitting in 

many papers on ACC-tools, like [1, 11, 12, 13, 14, 15, 16], and 

when discussed, it is restricted to false positives only. 

To operationalize our research question, we decomposed it 

into the following sub-questions: 

a) Do ACC tools find all the dependencies between modules 

in the software? 

b) Do ACC tools report all the violating dependencies in the 

software (no false negatives)? 

c) Do ACC tools report non-violating dependencies as 

violations (false positives)? 

d) Do ACC tools report the exact type and location of 

violations and dependencies?  

 

To answer these questions, we inventoried types of 

dependencies that can be established in object oriented program 

code. Next, we developed a custom made test application in 

Java which included these types of dependencies and an 

accompanying test script (we will use the working title 

“benchmark test” to refer to this test software and test script). 

After completion, we used the benchmark test to assess seven 

ACC-tools. In addition, we selected an open source system and 

used its code to examine the same tools on their ability to 

report dependencies and violations accurately. 

The next section of this paper provides an introduction in 

dependency analysis, as well as an overview of the types of 

dependencies included in this study. Section III introduces the 

tools and Section IV describes the method of tool testing. 

Section V presents the test results regarding the accuracy of 

dependency detection and Section VI those regarding the 

accuracy of violation reporting. Section VII discusses the 

limitations of our study, and compares our findings to related 

work. Section VIII concludes this paper; it answers the research 

sub-questions and provides recommendations. 

II. DEPENDENCY ANALYSIS 

Software architecture (SA) compliance checking covers a 

broad field, since software architecture “provides the 

framework within which to satisfy the system requirements and 

provides both the technical and managerial basis for the design 

and implementation of the system” [17]. Static ACC does not 

cover the full width of SA, but covers the modular architecture. 

According to Perry and Wolf [17], this architecture should 

describe the modular elements, their form (properties and 

relationships) and rationale. In this study, we focus on the 

relationships between modules. Relationships are used to 

constrain how the different elements may interact or otherwise 

may be related. In ACC’s center of attention are uses relations: 

“Module A uses module B if A depends on the presence of a 

correctly functioning B to satisfy its own requirements” [18].  

Dependency analysis is “the process of determining a 

program’s dependences” [19]. Various types of dependencies 

are distinguished in literature. Callo Arias et al. [20] consider 

that all types fit into three main categories: structural 

dependencies, behavioral dependencies, and traceability 

dependencies. The category of structural dependencies, 

dependencies among parts of a system, is of interest to our 

study, since static analysis tools focus on dependencies that can 

be found by inspecting the source code. For instance, Lattix’s 

LDM tool “uses a standard notion of dependency, in which a 

module A depends on a module B if there are explicit 

references in A to syntactic elements of B” [11]. 

Many references of different types can be established in 

object oriented program code. To prepare our test, we 

inventoried references in Java code and classified them into sub 

categories and types of structural dependencies. The results are 

subdivided into direct and indirect types, and are presented in 

the next subsections. We based our classification of 

dependency types on professional literature on Java and on 

research papers distinguishing different dependency types, like 

[21, 22, 23, 24, 25]. 

A. Example of a Modular Architecture 

The different types of dependency included in our test are 

specified in the following subsections. They are illustrated on 

the basis of a modular architecture in UML notation, shown in 

Fig. 1. In this diagram, two modules, ModuleA and ModuleB, 

are shown, each with two submodules. The classes in the 

submodules are related via associations, showing for instance 

that an instance of Class1 may know several instances of Class 

2. The dependency arrows show that ModuleA is allowed to 

use ModuleB1 and that Module A2 is allowed to use ModuleB. 

However, not all rules are visible. The following list shows the 

full set of relationship rules:  

 ModuleA1 is allowed to use ModuleB1;  

 ModuleA2 is allowed to use ModuleB, so also both sub 

modules, ModuleB1 and ModuleB2;  

 ModuleA1 is not allowed to use ModuleB2;  

 

 
Fig. 1.  Example of a modular architecture in UML notation. 
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 The submodules of ModuleA are allowed to use each 

other. The same type of rule applies to ModuleB. 

B. Direct Structural Dependency Types 

A dependency between two modules is direct, if the 

dependency relation does not involve an intermediate module. 

For example, ModuleA, in Fig. 1, depends on ModuleB, 

because a class in ModuleA1 uses a class in ModuleB1 with an 

explicit reference to that class. In Java, a preceding 

specification of an import command is required. 

An overview of the identified direct structural dependency 

types is shown in Table I, together with an example per sub 

category. The complete set of 25 direct dependency types in 

our test is included in Table IV. 

C. Indirect Structural Dependency Types in the Test 

A dependency relation is indirect, when the dependency 

exists transitively through an intermediate module. For 

example, ModuleA1, in Fig. 1, depends on ModuleB2 via 

ModuleB1. In that case, a class uses another class without an 

explicit reference to that class, so in Java no import command 

is required. An overview of the identified indirect structural 

dependency types is shown in Table II, together with an 

example per sub category. The complete set of nine indirect 

dependency types in our test is included in Table V. 

III. ACC-TOOLS INCLUDED IN THE TEST 

Many tools are available with some facilities to support 

ACC. Our research focused on tools with explicit support of 

ACC and static analysis of Java. We selected seven well-

known and publicly available tools1, which provided evaluation 

licenses. We excluded tools that focus mainly on architecture 

visualization, metrics and/or architecture refactoring. The seven 

tools included in our study are shown in Table III, which also 

gives an overview of functionalities, code variants and 

licensing. The tools provide their support of ACC in various 

ways. dTangler, Lattix, Macker and Sonar Architecture Rule 

Engine (ARE) provide editors to specify the modules and rules 

in text-format.  

dTangler and Lattix LDM provide a dependency structure 

matrix (DSM) to show and select the modules and the 

violations. Macker and Sonar ARE work with text-based 

violation reports only. Lattix is also able to visualize 

architectures graphically, and provides extensive reporting 

facilities. SAVE, Sonargraph Architect, and Structure101 

provide graphical editors to define the modules and rules in 

diagrams. Violations are shown in these diagrams, but textual 

reports are provided in addition. 

                                                           
1 dTangler - GUI version 2.0.0 - web.sysart.fi/dtangler;  

Lattix LDM - version 8.2.7 - lattix.com;  

Macker - version 0.4.2 - sourceforge.net/projects/macker;  

SAVE - version 1.7.1 - iese.fraunhofer.de;  

Sonar ARE - version 3.2 -  

docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;  

Sonargraph Architect (fusion of Sotograph and SonarJ) -   

version 7.1.8  - hello2morrow.com;  

Structure101 - version 3.5 - structure101.com. 

IV. TEST METHOD 

A. Benchmark Test 

Based on the inventory of different types of dependencies, 

described in Section II, a test was designed to assess the ACC-

tools. Next, a test software system in Java was developed with 

Eclipse Indigo SR2, and a test script was prepared. In the test 

set, 63 test cases (33 direct, 30 indirect) were aimed at the 

detection of false negatives regarding dependency detection 

and violation reporting. On top of that, 63 cases were aimed at 

the detection of false positives. As in the examples in Table I 

and II, we included in our test cases only dependencies that are 

detectable in the from-class, except for the indirect inheritance 

cases and the indirect “object reference – return value” case, 

which require analysis of the to-class as well. 

After the test preparation, the seven ACC-tools were tested. 

All the tools were subjected to the same test, described in the 

test script. During the first step of the test, the planned modular 

architecture was entered into the tool, including the mapping of 

modules to source code units, and the tool’s output of the 

dependency analysis (if provided) was assessed. During the 

second step, the rules restricting the dependencies between 

modules were defined, and the output of the tool’s 

conformance check was studied and compared with the 

expected result. During the third step, the test results of the 

tools were compared.  

In 2012, the first iteration of preparing, testing and 

reporting was conducted with 25 bachelor students in the 

TABLE I.  DIRECT STRUCTURAL DEPENDENCY TYPES IN THE TEST 

Sub Category/Dep. Type Example Code (from Class1 in Fig. 1) 

Import 

Class import 

Import ModuleB.ModuleB1.Class2; 

Type declaration 

Instance, Class variable; 
Parameter; Return type. 

private Class2 linkToC2; 

Method call 

Instance, Class method; 
Constructor. 

public String variable; 

variable = linkToC2.method(); 

Variable access 

Instance, Class variable; 

Object reference. 

variable = linkToC2.variable; 

Inheritance 
Extends class, 

Implements interface 

public class Class1 extends SuperClass1 { 

} 

Annotation 

Class annotation 
@Class2 

TABLE II.  INDIRECT STRUCTURAL DEPENDENCY TYPES IN THE TEST 

Sub Category/Dep. Type Example Code (from Class1 in Fig. 1) 

Method call 

Instance method; 

Class method. 

public String variable; 
variable = linkToC2.linkToC3.method(); 

Variable access 

Instance, Class variable; 
Object reference. 

variable = linkToC2.linkToC3.variable; 

Inheritance 

Extends – extends; 
Access inherited variable; 

Call inherited method. 

variable = linkToC2.variableSuper(); 
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course of a third year specialization semester “Advanced 

Software Engineering”. In 2013, the authors have reorganized 

and extended the benchmark test, have tested the tools again, 

and have included these results in this paper. The benchmark 

test-ware is available on request for other researchers. 

B. Freemind Test 

To complement the benchmark test and to improve the 

external validity we decided to perform tests with a freely 

available open source system. These tests were aimed at 

quantitative and qualitative tool comparison. We used the 

mind-mapping tool Freemind2 for this test. Freemind is 

developed in Java.  

We selected Freemind, based on the following criteria:  

 The system needs to have a simple internal 

architecture, meaning that the definition of modules, 

rules and the mapping from architecture to source can 

be registered straightforwardly in all tools. 

 The system is composed of parts with a high number 

of dependencies. Ideally, these dependencies cover a 

wide range of possible dependency types. 

 The number of classes has to be lower than 1000, due 

to size constraints of some SACC-tool licenses. 

There are three main packages in Freemind: accessories, 

plugins and freemind, as shown in Fig. 2. As some packages 

were only available in source code version and not as compiled 

version, we excluded these from the test.  

Two types of test were executed in successive steps. In the 

first step, we defined and tested two rules: “accessories is not 

allowed to use freemind” and “plugins is not allowed to use 

freemind”. The results of this test are discussed in Section VI. 

The second step comprised a detailed analysis, focused on 

the dependencies within one large class: ScriptingEngine 

                                                           
2 Version 0.9.0, retrieved on 23-08-2012 from  

http://freemind.sourceforge.net/wiki/index.php/Download 

within sub package plugins.script. We performed this step with 

the four tools that provide enough information to trace reported 

dependencies to code constructs: Lattix, SAVE, Sonargraph 

Architect, and Structure101. Comparing these tools was 

interesting, since they scored quite differently in the benchmark 

test, and work on different bases: source files (SAVE), class 

files (Lattix, Structure101) or both (Sonargraph Architect). One 

author performed the detailed analysis, and another author 

checked the results and aggregated the data. The results of this 

step are described in Section V.  

TABLE III.  CHARACTERISTICS OF THE TOOLS IN THE TEST. 
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General functionalities        

 Dependency browsing        

 Dependency visualization        

 Architecture compliance checking        

 Architecture refactoring/simulation        

 Team support         

Code variants        

 Java        

 Other languages        

 Source file analysis        

 Compiled file analysis        

Licensing        

 Paid: commercial use        

 

 

 
Fig. 2.  The package structure of Freemind, with dependency relations, as 

depicted by the SAVE tool. Thick lines represent more dependency 

relations than thin lines. 
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V. RESULTS: ACCURACY OF DEPENDENCY DETECTION 

The results of our tests concerning the accuracy of 

dependency detection are shown in detail in Table IV and V, 

while the most interesting findings are described below. Table 

IV shows the results with regard to direct dependencies, and 

Table V shows the results with regard to indirect dependencies. 

A. Findings from the Benchmark Test 

1) No tool in the test was able to detect all dependency types 

in our benchmark test software. On the average, 74 percent of 

the dependency types in the test-software was detected; 81 

percent of the 25 direct types and 57 percent of the 9 indirect 

types. The seven tools differ considerably in their ability to 

detect all types of dependencies included in our test. 

Structure101 and Sonargraph Architect detected the most 

dependency types, respectively 30 and 28 out of 34 types (88 

and 82 percent), while SAVE, on the other side, detected 18 

dependency types (53 percent). SAVE stands out, because it 

analyzes the source code, while the other tools primarily use 

compiled code. 

2) Direct dependencies, caused by type declaration (except 

local variables), method call, variable access (except constants 

and object references), and inheritance, were detected by all 

tested tools, except SAVE. However, the following 

dependency types proved difficult to detect.  

 Import dependencies were detected only by SAVE. 

 A type declaration of a local variable was detected only 

by SAVE. Remarkable, so we experimented with 

Lattix and Structure101 until we could conclude: 

Without initialization, it is not detected; with 

initialization, it is detected. Interesting, since other 

declaration cases without initialization were detected. 

 A call to a method of an inner class was reported by all 

tools, except SAVE, but the tools differ in the accuracy 

of the reported to-class. Macker, Sonargraph and Sonar 

ARE were more specific and reported the outer and 

inner class. dTangler, Lattix and Structure101 were 

less specific and reported only the outer class. 

 Access of a constant variable was detected only by 

Sonargraph Architect (with the option marked to 

include the source code in the analysis). Tools that 

analyze compiled code only, have problems with the 

recognition of constants, since their values are in-lined 

by the Java compiler. 

TABLE IV.  DETECTION OF DIRECT DEPENDENCIES (0 = NOT DETECTED; 1 = DETECTED) 

 

Category 
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Import Class import 0 0 0 1 0 0 0 

Type Declaration Instance variable 1 1 1 1 1 1 1 

 Class variable 1 1 1 1 1 1 1 

 Local variable, not initialized 0 0 0 1 0 0 0 

 Parameter 1 1 1 1 1 1 1 

 Return type 1 1 1 0 1 1 1 

 Exception 1 1 1 1 1 1 1 

 Type cast 1 1 1 0 1 1 1 

Method Call  Instance method 1 1 1 1 1 1 1 

 Instance method, inherited 1 1 1 1 1 1 1 

 Class method 1 1 1 1 1 1 1 

 Constructor 1 1 1 1 1 1 1 

 Inner class method 1 1 1 0 1 1 1 

 Interface method 1 1 1 1 1 1 1 

 Library class method 1 1 1 1 1 1 1 

Variable Access Instance variable (read, write) 1 1 1 0 1 1 1 

 Instance variable, inherited 1 1 1 0 1 1 1 

 Class variable 1 1 1 0 1 1 1 

 Constant variable 0 0 0 0 0 1 0 

 Enumeration 1 1 1 0 1 1 1 

 Object reference 0 0 0 0 0 1 1 

Inheritance Extends class 1 1 1 1 1 1 1 

 Extends abstract class 1 1 1 1 1 1 1 

 Implements interface 1 1 1 1 1 1 1 

Annotation  Class annotation 0 1 0 0 0 1 1 

Detected (out of 25) 20 21 20 15 20 23 22 

Percentage (average = 81 percent) 80 84 80 60 80 92 88 
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 Access of an object reference, in this case a reference 

variable used as parameter value, was detected only by 

Sonargraph and Structure101. 

 Dependencies of type annotation, were detected only 

by Lattix, Sonargraph, and Structure101. 

3) Indirect dependencies caused by method call and variable 

access (except an object reference as return value), were 

detected by all tested tools, except SAVE (this tool did not 

report access dependencies, direct nor indirect). Even double 

indirect dependencies were detected (for instance, from Class 1 

in Fig. 1, via Class 2 and Class 3 to Class 4). However, the 

following dependency types proved difficult to detect. 

 Access of an object reference, received as return value 

of a method call, was reported only by Structure101.   

 No tool reported dependencies to a super-super class, 

solely based on extends/implements constructs. 

 SAVE and Structure101 were the only tools that 

reported an indirect dependency to the super class 

implementing a method, when this method is called via 

its subclass. Indirect access of inherited instance 

variables was reported only by Structure101.  

The other tools reported a dependency to the subclass, 

but not to the implementing super class. Consequently, 

these tools did not report a violation, when the 

subclass was part of an allowed-to-use module, while 

its super class was part of a not-allowed-to-use 

module. For instance, a call from Class 1 in Fig. 1, via 

Class 2, to SuperClass2.methodSuper() in ModuleB2. 

In such cases, a strong dependency stays unnoticed. 

B. Findings from the Freemind Test 

To complement the benchmark test, code of class 

plugins.script.ScriptingEngine was used to test the accuracy of 

dependency detection. Within this class, we identified, by 

manual inspection of the code, 109 constructs with 

dependencies (of 14 different types) to package “freemind”. 

As next step, we tried to trace the dependencies reported by 

the tools to the manually identified dependencies. However, the 

tools differ considerably in the precision of dependency 

messages, as discussed in the next section and shown in Table 

VI and VII. Therefore, we performed this test only with four 

tools that provide enough information to trace the reported 

dependencies to code constructs. The most interesting findings 

are described below. 

1) Lattix detected 63 of the 109 dependencies (58 percent), 

SAVE 75 (69 percent), Sonargraph Architect 90 (83 percent), 

and Structure101 73 (67 percent); combined an average of 75 

(69 percent). These numbers will not be higher for the other 

tools, as far as we were able to ascertain, based on the detected 

depended-upon classes in the violation reports. Of the detected 

dependencies by the four tools, 52 overlapped (69 percent 

overlap). The not detected dependencies are described below, 

with their types, and their causes.  

 Import: Lattix, Structure101, and Sonargraph missed 

all 10; SAVE missed 1 Import dependency, because of 

a not-recognized inner class. 

 Type declaration of local variable: SAVE missed all 6, 

in contrast to the benchmark test; probably because off 

complex initialization statements at the same line. 

 Type declaration of parameter: SAVE missed 3 out of 

7, because of not detected inner classes. 

 Type declaration of type cast: SAVE missed all 2. 

 Method call, instance: Save missed 2 out of 14, 

because of not detected inner classes. 

 Method call, instance, inherited (direct): Lattix missed 

8 out of 32, Sonargraph missed 8, and Structure101 

missed 14; all because of not detected super classes in 

inheritance trees up to five levels. 

 Method call, constructor: Save missed 2 out of 3, 

because of not detected inner classes.  

 Access of constant class variable: Lattix, Structure101 

and SAVE missed all 12. 

 Access of object reference:  Lattix missed all 16; 

SAVE missed 6, because of not detected inner classes.  

 

TABLE V.  DETECTION OF INDIRECT DEPENDENCIES (0 = NOT DETECTED; 1 = DETECTED) 
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Method Call  Instance method 1 1 1 1 1 1 1 

 Class method 1 1 1 1 1 1 1 

Variable Access Instance variable 1 1 1 0 1 1 1 

 Class variable 1 1 1 0 1 1 1 

 Object reference – Reference var. 1 1 1 0 1 1 1 

 Object reference – Return value 0 0 0 0 0 0 1 

Inheritance Extends – implements, variations 0 0 0 0 0 0 0 

 Access – Instance variable, inherited 0 0 0 0 0 0 1 

 Call – Instance method, inherited 0 0 0 1 0 0 1 

Detected (out of 9) 5 5 5 3 5 5 8 

Percentage (average = 57 percent) 56 56 56 33 56 56 89 
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2) Not detected dependencies on inner classes and 

dependencies on methods inherited from super classes proved 

to be a significant part of the missed dependencies. We only 

marked a dependency as missed, when it was not reported at 

all. We did not mark a dependency as missed, when it was 

reported as a dependency to the outer class instead of the inner 

class, or to the sub class instead of the super class.    

3) Sonargraph Architect provided a very useful report to 

trace the dependencies in the code. It contained all the detected 

dependencies with type and line number. The reports of SAVE 

and Structure101 required much more analysis. In part, because 

one message does not always represent one code construct. For 

instance, SAVE and Structure101 reported respectively 54 and 

55 messages, which covered 75 and 73 dependencies in the 

code. Finally, Lattix’s reports proved not sufficient for our use; 

instead, we used the output of its Eclipse plug-in. 

VI. RESULTS: ACCURACY OF VIOLATION REPORTING 

A. Violation Messages 

Violation messages are reported at a relatively high level of 

abstraction, as shown in Table VI. All tools reported one 

violation message per from-class, to-class combination, except 

Lattix and SAVE. These tools reported a message for each 

combination of from-class, to-class, and dependency type. 

Because of different capabilities of the tools and different 

choices made by the developers, the tools report different 

numbers of violation messages. This is illustrated in Table VII, 

which holds the numbers of violation messages per tool during 

the Freemind test. The reported violations are shown for 

package accessories, for package plugins, and for class 

ScriptingEngine. For the latter, the numbers of reported to-

classes are shown as well, since they provide an indication of 

the accuracy of the tool. Observations regarding the accuracy 

of the violation messages are described below.  

1) The violation messages of the tools are adequate at 

management level to indicate whether the implementation 

conforms to the architectural rules. Management information to 

indicate the severity of the violation of a rule, like the number 

of actual underlying dependencies, is not included in the 

reports. Some tools show some information in separate views, 

like dTangler and Lattix (the number of classes with violating 

dependencies is shown in a DSM-cell), or SAVE (the thickness 

of a line in a diagram indicates the number of dependencies).  

2) No false positive violation messages were reported during 

our tests (although a few reported dependency messages 

contained incorrect information, like type or line number). In 

the benchmark test, 63 test cases were aimed at false positive 

detection, but no tool reported a false positive violation 

message for one of these cases.    

3) No cases were noticed during the benchmark tests, where 

a tool detected a dependency, but failed to report a violation. 

Consequently, Table IV and V also show the reported false 

negative violations per tool and per dependency type, except 

for SAVE. This tool reported violations for many classes 

containing violating direct dependencies, even when the 

specific dependency of the test case was not detected, based on 

detected violating import statements. SAVE did not have this 

advantage in case of indirect dependencies, since no import 

statement is included in these test cases. Import statements are 

detectable in source code only.   

B. Dependency Messages 

To enable developers to resolve a violation efficiently, 

more-detailed information is needed to trace the violating 

dependencies in the code. Five tools provide this information 

(we labelled it “dependency messages”) in separate reports or 

views: Lattix, SAVE, Sonar ARE, Sonargraph Architect, 

Structure101. All five tools provide the from-class and to-class 

per dependency message, and apart from Sonar ARE, also a 

dependency type. Two observations regarding the precision of 

the dependency messages are described below. 

1) The tools differ in precision of the reported location of a 

dependency, as can be seen in Table VI. Two tools (SAVE, 

TABLE VI.  PRECISION OF VIOLATION AND DEPENDENCY MESSAGES ( = INCLUDED IN MESSAGE). 
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Violation message        

 Class from        

 Class to        

 Dependency type        

Dependency message        

 Class from        

 Class to        

 Dependency type        

 Method from        

 Method to        

 Line and/or position within line  () 1   () 1   

1 An indication of the line (and/or position of the dependency construct within the line) is not provided in reports, but in a code viewer or IDE plug-in. 
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Structure101) indicated the method including the violating 

dependency and, in case of method calls, the method of the to-

class as well. The three other tools (Lattix, Sonar ARE, 

Sonargraph Architect) indicated the line holding the violating 

dependency. Lattix provided an information view with line 

numbers of dependencies in the code, but it did not always 

specify the correct line number in the source code. Lattix’s 

Eclipse plug-in indicated the lines and the position of violating 

code constructs, but not always accurately. Sonar ARE 

provided an embedded code viewer, but its usability was 

restricted by the fact that only the first violating dependency 

was indicated. Sonargraph Architect provided a detailed 

violation report with correct line numbers (when source code is 

included in the analysis), as well as an embedded code viewer 

and an IDE plug-in that showed violation indications at line 

level. 

2) The tools differ in the precision of the reported 

dependency type. The number of types and the types 

themselves vary per tool. For instance, an invocation of a 

constructor is reported by SAVE as "ACCESS", while 

Structure101 reports it as two dependencies; "calls", and 

"references". Some types used by the tools are very specific, 

while others cover many forms of code constructs. Even if the 

same type-name is used by two tools, like access, they may 

cover different dependency types within our classification. 

Likewise, a dependency type in our classification may be 

labelled very differently by various tools.  

VII. DISCUSSION 

To our opinion, all tested tools are providing useful 

functionality to perform an architecture compliance check. 

However, our tests show that all seven tools could improve the 

accuracy regarding dependency and violation reporting, though 

in varying degrees. Although this study included a tool test 

regarding ACC support, we do not advise on a “best” tool. To 

maintain objective, we refrained from this. Differences 

between the tools are large and include many aspects. 

Furthermore, some tools, especially the commercial tools, 

provide more functionalities than ACC, as shown in Table III.  

A. Limitations 

Our study can be characterized as a quasi-experiment, 

according to Wohlin et al. [26], since we did not work with a 

randomized selection of tools. Consequently, our findings may 

not be generalized to other tools, even though we tested seven 

tools in a small market.  

Furthermore, we do not claim that our classification of 

dependency types is complete, since dependencies may be 

established by many different types of code constructs in object 

oriented programs. However, the classification proved to be 

valuable. It was used to design our tests and will be used as 

starting point for further work. Similarly, we do not claim that 

our benchmark test is complete. A large variety of code 

constructs is possible per dependency type. Although the set 

test cases covered many common code constructs per 

dependency types, other code constructs per dependency type 

may produce different test outcomes. In favor of the internal 

validity, all test cases were detected by at least one tool, except 

the indirect dependency “inheritance, extends-implements 

variations” cases (although two of the three cases represented 

quite common situations). To compensate for possible 

deficiencies, we complemented the 2012 version of the 

benchmark test with the Freemind test, which indeed contained 

several variations not included in the benchmark test. In 2013, 

we extended the benchmark test with these cases, since the 

strict design of this custom-made test, with a separate class per 

test case, proved to be valuable; especially to test tools that 

provide only messages with a low level of precision. 

B. Related Work 

Calla Arias et al. [20] state that dependency analysis 

approaches that identify structural dependencies have a high 

degree of accuracy. Our research outcome shows that it is 

appropriate to be aware of the limitations of the tools used. 

Practitioners and academics rely on tools for their work. It is 

not hard to get impressed by the output of these tools, but it is 

hard to get an impression of what is missing in the output of a 

tool. Our study demonstrates that the tested tools will not 

always provide a 100 percent accurate output. Other 

comparative tool studies also show that static analysis tools and 

TABLE VII.  NUMBER OF REPORTED VIOLATION MESSAGES AND INCLUDED CLASSES WITHIN THE FREEMIND TEST. 
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accessories  freemind        

 Reported Violations 282 288 386 1-1332 1 378 362 308 

plugins  freemind        

 Reported Violations 63 65 87 1-229 1 79 75 71 

plugins.script.ScriptingEngine  freemind        

 Reported Violations 12 25 16 1-67 1 15 15 14 

 Reported to-classes (out of 18) 12 12 15 15 14 15 12 (15) 2 

1 The numbers of reported violation messages for SAVE vary, since they are shown in diagrams, which may be of very different abstraction levels. The highest number is the number of reported dependencies. 
2 Structure101 reported more depended-upon classes, shown as (15), at dependency level. 
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techniques are not always accurate. For instance, Sutton and 

Maletic compared four tools that reverse engineer C++ source 

code into UML models [27]. The numbers of recovered classes 

and relationships differed by about 20 percent and much more 

for attributes, operations and generalizations. Moreover, Rutar 

et al. [28] compared  five bug finding tools for Java, and they 

reported false positives, false negatives, redundant warnings 

and only 15-33 percent overlap between the tools. Compared to 

the set of bug finding tools, the ACC-tools in our test perform 

better, with no false positives and no redundancy, but with 

differences in output and quite a number of false negatives. 

According to Binkley [10], source code analysis is impeded 

by the complexities of modern programming languages. 

Barowski and Cross [29] pay special attention to dependencies 

on virtual members and on synthetic methods in their paper on 

the extraction and use of class dependency information for 

Java. Our study confirms that their special attention is justified, 

since these types of dependencies (to super classes and inner 

classes) are involved in many unreported dependencies and 

violations.  

Another topic in their paper is source file versus class file 

based dependency extraction, and they describe some 

differences between both forms. For their own tool, they 

choose for class file based extraction. We do not object to this 

choice, but we advise, based on our study, to include source 

code in the analysis of ACC-tools (too), to optimize the 

accuracy of the tool with respect to import statements, constant 

variables and the exact position of a dependency in the source. 

VIII. CONCLUSION 

Architecture compliance checking (ACC) relies on the 

support of tools to define modules and rules, to analyze the 

code, to check the compliance, and to report violations to the 

rules. In this study, we have investigated to which extent static 

ACC-tools report violation messages and dependency 

messages accurately. We classified dependency types, prepared 

a benchmark test, and tested seven tools on the basis of the 

benchmark test and the source of open source software of 

Freemind. 

A. Results Summary 

We started our study with the following research question 

in mind: How accurate do ACC-tools report dependencies and 

violations against dependency rules? In the Introduction, this 

question was decomposed into four sub questions, which are, at 

the end of this study, answered as follows:  

a) Do ACC tools find all the dependencies between 

modules in the software? No, on the average 74 percent of the 

dependency types in the benchmark test software was detected; 

81 percent of the 25 direct types, and 57 percent of the 9 

indirect types. All tools were able to detect dependencies 

established by basic constructs, like method calls and type 

declaration. However, the seven tools differ considerably in 

their ability to detect all types of dependencies included in our 

benchmark test. For instance, Structure101 and Sonargraph 

Architect detected respectively 88 and 82 percent of all 

dependency types, while SAVE detected 53 percent. The 

Freemind test showed different results for the numbers of 

detected dependencies in a module. Of the 109 identified 

dependencies, Sonargraph Architect detected 83 percent, 

SAVE 69 percent, and Structure101 67 percent. 

b) Do ACC tools report all the violating dependencies in 

the software (no false negatives)? Since no cases were noticed 

during the tests, where a tool detected a violating dependency 

but failed to report it, the answer to the previous sub question is 

valid here too.   

c) Do ACC tools report non-violating dependencies as 

violations (false positives)? No, during the benchmark test, no 

tool interpreted allowed dependencies in the program code as 

violating dependencies. In addition, nearly no errors in the 

violation messages were identified during the tests; only a few 

reported violations contained incorrect information. 

d) Do ACC tools report the exact type and location of 

violations and dependencies? Violations to dependency rules 

are reported by all tools at class level. At this level of 

abstraction, one message may represent several actual 

dependencies. Most tools are also able to report dependency 

details, but not always precisely enough to localize 

dependencies discretely. However, commercial tools provide 

plug-ins for IDEs to localize violations and to edit the code. 

B. Recommendations 

Based on our experiments concerning the accuracy of 

dependency detection and violation reporting, we present the 

following recommendations to ACC-tool developers: 

1) Enrich violation messages with an indication of the 

severity of the violation; for instance the number of actual 

dependencies represented by the violation message. This is 

relevant information for architects and management.  

2) Provide clear and precise dependency reports, which 

show all the dependencies, and per dependency, the type and 

the exact location. This is relevant information for developers. 

Provide configuration options to sort the dependency messages 

and browse them at different levels of aggregation.  

3) Provide a balanced set of dependency types with clear 

definitions to the user. Best standardize the terminology 

concerning dependency types over tools. 

4) Include source code in the analysis, to optimize the 

accuracy of the tool with respect to import statements, constant 

variables and the exact position of a dependency in the source. 

Detecting import statements is especially beneficial, when the 

detection of actual usage constructs fails. 

 

We also have one recommendation to the users of the tools: 

1) Be aware of the qualitative and quantitative limitations 

of the tool’s output. 

 

In conclusion, the seven tested tools provide useful support 

for ACC, but all could improve the accuracy of the reported 

dependencies and violations. Research on the performance and 

improvement of dependency analysis is relevant for 

practitioners and academics, since dependency analysis 

supplies the data not only for architecture analysis and ACC, 

but also for metrics and architecture restructuring advice. 
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