
Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

On the Accuracy of Architecture Compliance

Checking Support
Accuracy of Dependency Analysis and Violation Reporting

Leo Pruijt, Christian Köppe

Information Systems Architecture Research Group

HU University of Applied Sciences

Utrecht, The Netherlands

{leo.pruijt, christian.köppe}@hu.nl

Sjaak Brinkkemper

Department of Information and Computing Sciences

University Utrecht

Utrecht, The Netherlands

s.brinkkemper@uu.nl

Abstract—Architecture Compliance Checking (ACC) is useful

to bridge the gap between architecture and implementation. ACC

is an approach to verify conformance of implemented program

code to high-level models of architectural design. Static ACC

focuses on the modular software architecture and on the

existence of rule violating dependencies between modules.

Accurate tool support is essential for effective and efficient ACC.

This paper presents a study on the accuracy of ACC tools

regarding dependency analysis and violation reporting. Seven

tools were tested and compared by means of a custom-made test

application. In addition, the code of open source system Freemind

was used to compare the tools on the number and precision of

reported violation and dependency messages. On the average, 74

percent of 34 dependency types in our custom-made test software

were reported, while 69 percent of 109 violating dependencies

within a module of Freemind were reported. The test results

show large differences between the tools, but all tools could

improve the accuracy of the reported dependencies and

violations.

Index Terms—Software architecture, modular architecture,

architecture compliance, architecture conformance, static

analysis, dependency analysis, dependency detection, accuracy

I. INTRODUCTION

Software architecture is of major importance to achieve the

business goals, functional requirements and quality

requirements of a system. However, architectural models tend

to be of a high-level of abstraction, and deviations of the

software architecture arise easily during the development and

evolution of a system [1]. Architecture Compliance Checking

(ACC) is an approach to bridge the gap between the high-level

models of architectural design and the implemented program

code, and to prevent architectural erosion [2]. Knodel and

Popescu defined architecture compliance as “a measure to

which degree the implemented architecture in the source code

conforms to the planned software architecture” [3]. The terms

architecture compliance and its synonym architecture

conformance are both used in literature.

Many tools and techniques are available to analyze a

software system, and to reconstruct, visualize, check, or

restructure its architecture [4]. In our study, we focus on tools

supporting static ACC, which analyze software without

executing the code. These tools, which we label as static ACC-

tools, focus on the modular structure in the source code, and

identify structural elements, such as packages and classes. In

addition, they analyze use-relations between these elements,

such as an invocation of a method or access of an attribute. To

support ACC, the tools provide facilities to: a) define modular

elements and rules restricting these elements and their

relationships; b) check the compliance to these rules; and c)

report violations to these rules. For example, a tool should

report a violation if a method-call in the code from class A to B

corresponds with a dependency from module X to module Y in

the planned architecture, when a rule exists which forbids such

a dependency.

Although ACC-tools predominantly check for the same

kind of inconsistencies between the implemented and intended

modular architecture, only a few studies have compared these

tools. Previous studies have identified large differences in

terminology and approach [3, 5, 6]. For instance, the study of

Passos et al. [5] identified and evaluated three techniques of

static architecture checking. Furthermore, they explored the

effectiveness and usability of three supporting tools by

executing tests, based on a simple system with a basic

architecture. Our research follows Passos et al. We aspire to

contribute to the evolution of ACC, motivated by the notion

that the adoption of ACC-tools is still limited [2, 7]. Further

research is necessary to advance and improve current methods

and tools [8]. We focus on the effectiveness of ACC, since it is

of primary interest to users and researchers. The “Quality in

use model” of ISO 25010 [9] defines effectiveness as

“accuracy and completeness with which users achieve specified

goals”. Starting from this definition, relevant research

questions arise. Do static ACC-tools provide complete support

for architectural conformance checks? Do such tools perform

accurate checks?

In this study, we focus on the second question, scoped to

the research question: How accurate do ACC-tools report

dependencies and violations against dependency rules?

Accuracy is relevant, since emerging trends are to use

source/code analysis throughout the coding process [10], and to

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

extract and update architectural views continuously [8].

Although static analysis is theoretically not difficult, the

complexities of modern programming languages significantly

impede source code analysis [10]. But, unlike performance,

accuracy of ACC does not receive much attention. The

accuracy of dependency and violation reporting is omitting in

many papers on ACC-tools, like [1, 11, 12, 13, 14, 15, 16], and

when discussed, it is restricted to false positives only.

To operationalize our research question, we decomposed it

into the following sub-questions:

a) Do ACC tools find all the dependencies between modules

in the software?

b) Do ACC tools report all the violating dependencies in the

software (no false negatives)?

c) Do ACC tools report non-violating dependencies as

violations (false positives)?

d) Do ACC tools report the exact type and location of

violations and dependencies?

To answer these questions, we inventoried types of

dependencies that can be established in object oriented program

code. Next, we developed a custom made test application in

Java which included these types of dependencies and an

accompanying test script (we will use the working title

“benchmark test” to refer to this test software and test script).

After completion, we used the benchmark test to assess seven

ACC-tools. In addition, we selected an open source system and

used its code to examine the same tools on their ability to

report dependencies and violations accurately.

The next section of this paper provides an introduction in

dependency analysis, as well as an overview of the types of

dependencies included in this study. Section III introduces the

tools and Section IV describes the method of tool testing.

Section V presents the test results regarding the accuracy of

dependency detection and Section VI those regarding the

accuracy of violation reporting. Section VII discusses the

limitations of our study, and compares our findings to related

work. Section VIII concludes this paper; it answers the research

sub-questions and provides recommendations.

II. DEPENDENCY ANALYSIS

Software architecture (SA) compliance checking covers a

broad field, since software architecture “provides the

framework within which to satisfy the system requirements and

provides both the technical and managerial basis for the design

and implementation of the system” [17]. Static ACC does not

cover the full width of SA, but covers the modular architecture.

According to Perry and Wolf [17], this architecture should

describe the modular elements, their form (properties and

relationships) and rationale. In this study, we focus on the

relationships between modules. Relationships are used to

constrain how the different elements may interact or otherwise

may be related. In ACC’s center of attention are uses relations:

“Module A uses module B if A depends on the presence of a

correctly functioning B to satisfy its own requirements” [18].

Dependency analysis is “the process of determining a

program’s dependences” [19]. Various types of dependencies

are distinguished in literature. Callo Arias et al. [20] consider

that all types fit into three main categories: structural

dependencies, behavioral dependencies, and traceability

dependencies. The category of structural dependencies,

dependencies among parts of a system, is of interest to our

study, since static analysis tools focus on dependencies that can

be found by inspecting the source code. For instance, Lattix’s

LDM tool “uses a standard notion of dependency, in which a

module A depends on a module B if there are explicit

references in A to syntactic elements of B” [11].

Many references of different types can be established in

object oriented program code. To prepare our test, we

inventoried references in Java code and classified them into sub

categories and types of structural dependencies. The results are

subdivided into direct and indirect types, and are presented in

the next subsections. We based our classification of

dependency types on professional literature on Java and on

research papers distinguishing different dependency types, like

[21, 22, 23, 24, 25].

A. Example of a Modular Architecture

The different types of dependency included in our test are

specified in the following subsections. They are illustrated on

the basis of a modular architecture in UML notation, shown in

Fig. 1. In this diagram, two modules, ModuleA and ModuleB,

are shown, each with two submodules. The classes in the

submodules are related via associations, showing for instance

that an instance of Class1 may know several instances of Class

2. The dependency arrows show that ModuleA is allowed to

use ModuleB1 and that Module A2 is allowed to use ModuleB.

However, not all rules are visible. The following list shows the

full set of relationship rules:

 ModuleA1 is allowed to use ModuleB1;

 ModuleA2 is allowed to use ModuleB, so also both sub

modules, ModuleB1 and ModuleB2;

 ModuleA1 is not allowed to use ModuleB2;

Fig. 1. Example of a modular architecture in UML notation.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

 The submodules of ModuleA are allowed to use each

other. The same type of rule applies to ModuleB.

B. Direct Structural Dependency Types

A dependency between two modules is direct, if the

dependency relation does not involve an intermediate module.

For example, ModuleA, in Fig. 1, depends on ModuleB,

because a class in ModuleA1 uses a class in ModuleB1 with an

explicit reference to that class. In Java, a preceding

specification of an import command is required.

An overview of the identified direct structural dependency

types is shown in Table I, together with an example per sub

category. The complete set of 25 direct dependency types in

our test is included in Table IV.

C. Indirect Structural Dependency Types in the Test

A dependency relation is indirect, when the dependency

exists transitively through an intermediate module. For

example, ModuleA1, in Fig. 1, depends on ModuleB2 via

ModuleB1. In that case, a class uses another class without an

explicit reference to that class, so in Java no import command

is required. An overview of the identified indirect structural

dependency types is shown in Table II, together with an

example per sub category. The complete set of nine indirect

dependency types in our test is included in Table V.

III. ACC-TOOLS INCLUDED IN THE TEST

Many tools are available with some facilities to support

ACC. Our research focused on tools with explicit support of

ACC and static analysis of Java. We selected seven well-

known and publicly available tools1, which provided evaluation

licenses. We excluded tools that focus mainly on architecture

visualization, metrics and/or architecture refactoring. The seven

tools included in our study are shown in Table III, which also

gives an overview of functionalities, code variants and

licensing. The tools provide their support of ACC in various

ways. dTangler, Lattix, Macker and Sonar Architecture Rule

Engine (ARE) provide editors to specify the modules and rules

in text-format.

dTangler and Lattix LDM provide a dependency structure

matrix (DSM) to show and select the modules and the

violations. Macker and Sonar ARE work with text-based

violation reports only. Lattix is also able to visualize

architectures graphically, and provides extensive reporting

facilities. SAVE, Sonargraph Architect, and Structure101

provide graphical editors to define the modules and rules in

diagrams. Violations are shown in these diagrams, but textual

reports are provided in addition.

1 dTangler - GUI version 2.0.0 - web.sysart.fi/dtangler;

Lattix LDM - version 8.2.7 - lattix.com;

Macker - version 0.4.2 - sourceforge.net/projects/macker;

SAVE - version 1.7.1 - iese.fraunhofer.de;

Sonar ARE - version 3.2 -

docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;

Sonargraph Architect (fusion of Sotograph and SonarJ) -

version 7.1.8 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

IV. TEST METHOD

A. Benchmark Test

Based on the inventory of different types of dependencies,

described in Section II, a test was designed to assess the ACC-

tools. Next, a test software system in Java was developed with

Eclipse Indigo SR2, and a test script was prepared. In the test

set, 63 test cases (33 direct, 30 indirect) were aimed at the

detection of false negatives regarding dependency detection

and violation reporting. On top of that, 63 cases were aimed at

the detection of false positives. As in the examples in Table I

and II, we included in our test cases only dependencies that are

detectable in the from-class, except for the indirect inheritance

cases and the indirect “object reference – return value” case,

which require analysis of the to-class as well.

After the test preparation, the seven ACC-tools were tested.

All the tools were subjected to the same test, described in the

test script. During the first step of the test, the planned modular

architecture was entered into the tool, including the mapping of

modules to source code units, and the tool’s output of the

dependency analysis (if provided) was assessed. During the

second step, the rules restricting the dependencies between

modules were defined, and the output of the tool’s

conformance check was studied and compared with the

expected result. During the third step, the test results of the

tools were compared.

In 2012, the first iteration of preparing, testing and

reporting was conducted with 25 bachelor students in the

TABLE I. DIRECT STRUCTURAL DEPENDENCY TYPES IN THE TEST

Sub Category/Dep. Type Example Code (from Class1 in Fig. 1)

Import

Class import

Import ModuleB.ModuleB1.Class2;

Type declaration

Instance, Class variable;
Parameter; Return type.

private Class2 linkToC2;

Method call

Instance, Class method;
Constructor.

public String variable;

variable = linkToC2.method();

Variable access

Instance, Class variable;

Object reference.

variable = linkToC2.variable;

Inheritance
Extends class,

Implements interface

public class Class1 extends SuperClass1 {

}

Annotation

Class annotation
@Class2

TABLE II. INDIRECT STRUCTURAL DEPENDENCY TYPES IN THE TEST

Sub Category/Dep. Type Example Code (from Class1 in Fig. 1)

Method call

Instance method;

Class method.

public String variable;
variable = linkToC2.linkToC3.method();

Variable access

Instance, Class variable;
Object reference.

variable = linkToC2.linkToC3.variable;

Inheritance

Extends – extends;
Access inherited variable;

Call inherited method.

variable = linkToC2.variableSuper();

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

course of a third year specialization semester “Advanced

Software Engineering”. In 2013, the authors have reorganized

and extended the benchmark test, have tested the tools again,

and have included these results in this paper. The benchmark

test-ware is available on request for other researchers.

B. Freemind Test

To complement the benchmark test and to improve the

external validity we decided to perform tests with a freely

available open source system. These tests were aimed at

quantitative and qualitative tool comparison. We used the

mind-mapping tool Freemind2 for this test. Freemind is

developed in Java.

We selected Freemind, based on the following criteria:

 The system needs to have a simple internal

architecture, meaning that the definition of modules,

rules and the mapping from architecture to source can

be registered straightforwardly in all tools.

 The system is composed of parts with a high number

of dependencies. Ideally, these dependencies cover a

wide range of possible dependency types.

 The number of classes has to be lower than 1000, due

to size constraints of some SACC-tool licenses.

There are three main packages in Freemind: accessories,

plugins and freemind, as shown in Fig. 2. As some packages

were only available in source code version and not as compiled

version, we excluded these from the test.

Two types of test were executed in successive steps. In the

first step, we defined and tested two rules: “accessories is not

allowed to use freemind” and “plugins is not allowed to use

freemind”. The results of this test are discussed in Section VI.

The second step comprised a detailed analysis, focused on

the dependencies within one large class: ScriptingEngine

2 Version 0.9.0, retrieved on 23-08-2012 from

http://freemind.sourceforge.net/wiki/index.php/Download

within sub package plugins.script. We performed this step with

the four tools that provide enough information to trace reported

dependencies to code constructs: Lattix, SAVE, Sonargraph

Architect, and Structure101. Comparing these tools was

interesting, since they scored quite differently in the benchmark

test, and work on different bases: source files (SAVE), class

files (Lattix, Structure101) or both (Sonargraph Architect). One

author performed the detailed analysis, and another author

checked the results and aggregated the data. The results of this

step are described in Section V.

TABLE III. CHARACTERISTICS OF THE TOOLS IN THE TEST.

d
T

a
n

g
le

r

L
a

ttix

 M
a
c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e1

0
1

General functionalities

 Dependency browsing    

 Dependency visualization    

 Architecture compliance checking       

 Architecture refactoring/simulation   

 Team support  

Code variants

 Java       

 Other languages   

 Source file analysis  

 Compiled file analysis      

Licensing

 Paid: commercial use    

Fig. 2. The package structure of Freemind, with dependency relations, as

depicted by the SAVE tool. Thick lines represent more dependency

relations than thin lines.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

V. RESULTS: ACCURACY OF DEPENDENCY DETECTION

The results of our tests concerning the accuracy of

dependency detection are shown in detail in Table IV and V,

while the most interesting findings are described below. Table

IV shows the results with regard to direct dependencies, and

Table V shows the results with regard to indirect dependencies.

A. Findings from the Benchmark Test

1) No tool in the test was able to detect all dependency types

in our benchmark test software. On the average, 74 percent of

the dependency types in the test-software was detected; 81

percent of the 25 direct types and 57 percent of the 9 indirect

types. The seven tools differ considerably in their ability to

detect all types of dependencies included in our test.

Structure101 and Sonargraph Architect detected the most

dependency types, respectively 30 and 28 out of 34 types (88

and 82 percent), while SAVE, on the other side, detected 18

dependency types (53 percent). SAVE stands out, because it

analyzes the source code, while the other tools primarily use

compiled code.

2) Direct dependencies, caused by type declaration (except

local variables), method call, variable access (except constants

and object references), and inheritance, were detected by all

tested tools, except SAVE. However, the following

dependency types proved difficult to detect.

 Import dependencies were detected only by SAVE.

 A type declaration of a local variable was detected only

by SAVE. Remarkable, so we experimented with

Lattix and Structure101 until we could conclude:

Without initialization, it is not detected; with

initialization, it is detected. Interesting, since other

declaration cases without initialization were detected.

 A call to a method of an inner class was reported by all

tools, except SAVE, but the tools differ in the accuracy

of the reported to-class. Macker, Sonargraph and Sonar

ARE were more specific and reported the outer and

inner class. dTangler, Lattix and Structure101 were

less specific and reported only the outer class.

 Access of a constant variable was detected only by

Sonargraph Architect (with the option marked to

include the source code in the analysis). Tools that

analyze compiled code only, have problems with the

recognition of constants, since their values are in-lined

by the Java compiler.

TABLE IV. DETECTION OF DIRECT DEPENDENCIES (0 = NOT DETECTED; 1 = DETECTED)

Category

Dependency Types

d
T

a
n

g
le

r

L
a

ttix

 M
a
c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e1

0
1

Import Class import 0 0 0 1 0 0 0

Type Declaration Instance variable 1 1 1 1 1 1 1

 Class variable 1 1 1 1 1 1 1

 Local variable, not initialized 0 0 0 1 0 0 0

 Parameter 1 1 1 1 1 1 1

 Return type 1 1 1 0 1 1 1

 Exception 1 1 1 1 1 1 1

 Type cast 1 1 1 0 1 1 1

Method Call Instance method 1 1 1 1 1 1 1

 Instance method, inherited 1 1 1 1 1 1 1

 Class method 1 1 1 1 1 1 1

 Constructor 1 1 1 1 1 1 1

 Inner class method 1 1 1 0 1 1 1

 Interface method 1 1 1 1 1 1 1

 Library class method 1 1 1 1 1 1 1

Variable Access Instance variable (read, write) 1 1 1 0 1 1 1

 Instance variable, inherited 1 1 1 0 1 1 1

 Class variable 1 1 1 0 1 1 1

 Constant variable 0 0 0 0 0 1 0

 Enumeration 1 1 1 0 1 1 1

 Object reference 0 0 0 0 0 1 1

Inheritance Extends class 1 1 1 1 1 1 1

 Extends abstract class 1 1 1 1 1 1 1

 Implements interface 1 1 1 1 1 1 1

Annotation Class annotation 0 1 0 0 0 1 1

Detected (out of 25) 20 21 20 15 20 23 22

Percentage (average = 81 percent) 80 84 80 60 80 92 88

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

 Access of an object reference, in this case a reference

variable used as parameter value, was detected only by

Sonargraph and Structure101.

 Dependencies of type annotation, were detected only

by Lattix, Sonargraph, and Structure101.

3) Indirect dependencies caused by method call and variable

access (except an object reference as return value), were

detected by all tested tools, except SAVE (this tool did not

report access dependencies, direct nor indirect). Even double

indirect dependencies were detected (for instance, from Class 1

in Fig. 1, via Class 2 and Class 3 to Class 4). However, the

following dependency types proved difficult to detect.

 Access of an object reference, received as return value

of a method call, was reported only by Structure101.

 No tool reported dependencies to a super-super class,

solely based on extends/implements constructs.

 SAVE and Structure101 were the only tools that

reported an indirect dependency to the super class

implementing a method, when this method is called via

its subclass. Indirect access of inherited instance

variables was reported only by Structure101.

The other tools reported a dependency to the subclass,

but not to the implementing super class. Consequently,

these tools did not report a violation, when the

subclass was part of an allowed-to-use module, while

its super class was part of a not-allowed-to-use

module. For instance, a call from Class 1 in Fig. 1, via

Class 2, to SuperClass2.methodSuper() in ModuleB2.

In such cases, a strong dependency stays unnoticed.

B. Findings from the Freemind Test

To complement the benchmark test, code of class

plugins.script.ScriptingEngine was used to test the accuracy of

dependency detection. Within this class, we identified, by

manual inspection of the code, 109 constructs with

dependencies (of 14 different types) to package “freemind”.

As next step, we tried to trace the dependencies reported by

the tools to the manually identified dependencies. However, the

tools differ considerably in the precision of dependency

messages, as discussed in the next section and shown in Table

VI and VII. Therefore, we performed this test only with four

tools that provide enough information to trace the reported

dependencies to code constructs. The most interesting findings

are described below.

1) Lattix detected 63 of the 109 dependencies (58 percent),

SAVE 75 (69 percent), Sonargraph Architect 90 (83 percent),

and Structure101 73 (67 percent); combined an average of 75

(69 percent). These numbers will not be higher for the other

tools, as far as we were able to ascertain, based on the detected

depended-upon classes in the violation reports. Of the detected

dependencies by the four tools, 52 overlapped (69 percent

overlap). The not detected dependencies are described below,

with their types, and their causes.

 Import: Lattix, Structure101, and Sonargraph missed

all 10; SAVE missed 1 Import dependency, because of

a not-recognized inner class.

 Type declaration of local variable: SAVE missed all 6,

in contrast to the benchmark test; probably because off

complex initialization statements at the same line.

 Type declaration of parameter: SAVE missed 3 out of

7, because of not detected inner classes.

 Type declaration of type cast: SAVE missed all 2.

 Method call, instance: Save missed 2 out of 14,

because of not detected inner classes.

 Method call, instance, inherited (direct): Lattix missed

8 out of 32, Sonargraph missed 8, and Structure101

missed 14; all because of not detected super classes in

inheritance trees up to five levels.

 Method call, constructor: Save missed 2 out of 3,

because of not detected inner classes.

 Access of constant class variable: Lattix, Structure101

and SAVE missed all 12.

 Access of object reference: Lattix missed all 16;

SAVE missed 6, because of not detected inner classes.

TABLE V. DETECTION OF INDIRECT DEPENDENCIES (0 = NOT DETECTED; 1 = DETECTED)

Category

Dependency Types

d
T

a
n

g
le

r

L
a

ttix

M
a

c
k

er

S
A

V
E

S
o

n
a
r
 A

R
E

S
o

n
a
r
g
r
a

p
h

A
r
c
h

itec
t

S
tr

u
c
tu

r
e1

0
1

Method Call Instance method 1 1 1 1 1 1 1

 Class method 1 1 1 1 1 1 1

Variable Access Instance variable 1 1 1 0 1 1 1

 Class variable 1 1 1 0 1 1 1

 Object reference – Reference var. 1 1 1 0 1 1 1

 Object reference – Return value 0 0 0 0 0 0 1

Inheritance Extends – implements, variations 0 0 0 0 0 0 0

 Access – Instance variable, inherited 0 0 0 0 0 0 1

 Call – Instance method, inherited 0 0 0 1 0 0 1

Detected (out of 9) 5 5 5 3 5 5 8

Percentage (average = 57 percent) 56 56 56 33 56 56 89

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

2) Not detected dependencies on inner classes and

dependencies on methods inherited from super classes proved

to be a significant part of the missed dependencies. We only

marked a dependency as missed, when it was not reported at

all. We did not mark a dependency as missed, when it was

reported as a dependency to the outer class instead of the inner

class, or to the sub class instead of the super class.

3) Sonargraph Architect provided a very useful report to

trace the dependencies in the code. It contained all the detected

dependencies with type and line number. The reports of SAVE

and Structure101 required much more analysis. In part, because

one message does not always represent one code construct. For

instance, SAVE and Structure101 reported respectively 54 and

55 messages, which covered 75 and 73 dependencies in the

code. Finally, Lattix’s reports proved not sufficient for our use;

instead, we used the output of its Eclipse plug-in.

VI. RESULTS: ACCURACY OF VIOLATION REPORTING

A. Violation Messages

Violation messages are reported at a relatively high level of

abstraction, as shown in Table VI. All tools reported one

violation message per from-class, to-class combination, except

Lattix and SAVE. These tools reported a message for each

combination of from-class, to-class, and dependency type.

Because of different capabilities of the tools and different

choices made by the developers, the tools report different

numbers of violation messages. This is illustrated in Table VII,

which holds the numbers of violation messages per tool during

the Freemind test. The reported violations are shown for

package accessories, for package plugins, and for class

ScriptingEngine. For the latter, the numbers of reported to-

classes are shown as well, since they provide an indication of

the accuracy of the tool. Observations regarding the accuracy

of the violation messages are described below.

1) The violation messages of the tools are adequate at

management level to indicate whether the implementation

conforms to the architectural rules. Management information to

indicate the severity of the violation of a rule, like the number

of actual underlying dependencies, is not included in the

reports. Some tools show some information in separate views,

like dTangler and Lattix (the number of classes with violating

dependencies is shown in a DSM-cell), or SAVE (the thickness

of a line in a diagram indicates the number of dependencies).

2) No false positive violation messages were reported during

our tests (although a few reported dependency messages

contained incorrect information, like type or line number). In

the benchmark test, 63 test cases were aimed at false positive

detection, but no tool reported a false positive violation

message for one of these cases.

3) No cases were noticed during the benchmark tests, where

a tool detected a dependency, but failed to report a violation.

Consequently, Table IV and V also show the reported false

negative violations per tool and per dependency type, except

for SAVE. This tool reported violations for many classes

containing violating direct dependencies, even when the

specific dependency of the test case was not detected, based on

detected violating import statements. SAVE did not have this

advantage in case of indirect dependencies, since no import

statement is included in these test cases. Import statements are

detectable in source code only.

B. Dependency Messages

To enable developers to resolve a violation efficiently,

more-detailed information is needed to trace the violating

dependencies in the code. Five tools provide this information

(we labelled it “dependency messages”) in separate reports or

views: Lattix, SAVE, Sonar ARE, Sonargraph Architect,

Structure101. All five tools provide the from-class and to-class

per dependency message, and apart from Sonar ARE, also a

dependency type. Two observations regarding the precision of

the dependency messages are described below.

1) The tools differ in precision of the reported location of a

dependency, as can be seen in Table VI. Two tools (SAVE,

TABLE VI. PRECISION OF VIOLATION AND DEPENDENCY MESSAGES ( = INCLUDED IN MESSAGE).

 d
T

a
n

g
ler

 L
a

ttix

 M
a
c
k

er

 S
A

V
E

 S
o

n
a

r A
R

E

 S
o

n
a

rg
ra

p
h

 A
r
c
h

ite
c
t

 S
tr

u
c
tu

re
1
0
1

Violation message

 Class from       

 Class to       

 Dependency type  

Dependency message

 Class from       

 Class to       

 Dependency type    

 Method from  

 Method to  

 Line and/or position within line () 1 () 1 

1 An indication of the line (and/or position of the dependency construct within the line) is not provided in reports, but in a code viewer or IDE plug-in.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

Structure101) indicated the method including the violating

dependency and, in case of method calls, the method of the to-

class as well. The three other tools (Lattix, Sonar ARE,

Sonargraph Architect) indicated the line holding the violating

dependency. Lattix provided an information view with line

numbers of dependencies in the code, but it did not always

specify the correct line number in the source code. Lattix’s

Eclipse plug-in indicated the lines and the position of violating

code constructs, but not always accurately. Sonar ARE

provided an embedded code viewer, but its usability was

restricted by the fact that only the first violating dependency

was indicated. Sonargraph Architect provided a detailed

violation report with correct line numbers (when source code is

included in the analysis), as well as an embedded code viewer

and an IDE plug-in that showed violation indications at line

level.

2) The tools differ in the precision of the reported

dependency type. The number of types and the types

themselves vary per tool. For instance, an invocation of a

constructor is reported by SAVE as "ACCESS", while

Structure101 reports it as two dependencies; "calls", and

"references". Some types used by the tools are very specific,

while others cover many forms of code constructs. Even if the

same type-name is used by two tools, like access, they may

cover different dependency types within our classification.

Likewise, a dependency type in our classification may be

labelled very differently by various tools.

VII. DISCUSSION

To our opinion, all tested tools are providing useful

functionality to perform an architecture compliance check.

However, our tests show that all seven tools could improve the

accuracy regarding dependency and violation reporting, though

in varying degrees. Although this study included a tool test

regarding ACC support, we do not advise on a “best” tool. To

maintain objective, we refrained from this. Differences

between the tools are large and include many aspects.

Furthermore, some tools, especially the commercial tools,

provide more functionalities than ACC, as shown in Table III.

A. Limitations

Our study can be characterized as a quasi-experiment,

according to Wohlin et al. [26], since we did not work with a

randomized selection of tools. Consequently, our findings may

not be generalized to other tools, even though we tested seven

tools in a small market.

Furthermore, we do not claim that our classification of

dependency types is complete, since dependencies may be

established by many different types of code constructs in object

oriented programs. However, the classification proved to be

valuable. It was used to design our tests and will be used as

starting point for further work. Similarly, we do not claim that

our benchmark test is complete. A large variety of code

constructs is possible per dependency type. Although the set

test cases covered many common code constructs per

dependency types, other code constructs per dependency type

may produce different test outcomes. In favor of the internal

validity, all test cases were detected by at least one tool, except

the indirect dependency “inheritance, extends-implements

variations” cases (although two of the three cases represented

quite common situations). To compensate for possible

deficiencies, we complemented the 2012 version of the

benchmark test with the Freemind test, which indeed contained

several variations not included in the benchmark test. In 2013,

we extended the benchmark test with these cases, since the

strict design of this custom-made test, with a separate class per

test case, proved to be valuable; especially to test tools that

provide only messages with a low level of precision.

B. Related Work

Calla Arias et al. [20] state that dependency analysis

approaches that identify structural dependencies have a high

degree of accuracy. Our research outcome shows that it is

appropriate to be aware of the limitations of the tools used.

Practitioners and academics rely on tools for their work. It is

not hard to get impressed by the output of these tools, but it is

hard to get an impression of what is missing in the output of a

tool. Our study demonstrates that the tested tools will not

always provide a 100 percent accurate output. Other

comparative tool studies also show that static analysis tools and

TABLE VII. NUMBER OF REPORTED VIOLATION MESSAGES AND INCLUDED CLASSES WITHIN THE FREEMIND TEST.

 d
T

a
n

g
ler

 L
a

ttix

 M
a
c
k

er

 S
A

V
E

 S
o

n
a

r A
R

E

 S
o

n
a

rg
ra

p
h

 A
r
c
h

ite
c
t

 S
tr

u
c
tu

re
1
0
1

accessories  freemind

 Reported Violations 282 288 386 1-1332 1 378 362 308

plugins  freemind

 Reported Violations 63 65 87 1-229 1 79 75 71

plugins.script.ScriptingEngine  freemind

 Reported Violations 12 25 16 1-67 1 15 15 14

 Reported to-classes (out of 18) 12 12 15 15 14 15 12 (15) 2

1 The numbers of reported violation messages for SAVE vary, since they are shown in diagrams, which may be of very different abstraction levels. The highest number is the number of reported dependencies.
2 Structure101 reported more depended-upon classes, shown as (15), at dependency level.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

techniques are not always accurate. For instance, Sutton and

Maletic compared four tools that reverse engineer C++ source

code into UML models [27]. The numbers of recovered classes

and relationships differed by about 20 percent and much more

for attributes, operations and generalizations. Moreover, Rutar

et al. [28] compared five bug finding tools for Java, and they

reported false positives, false negatives, redundant warnings

and only 15-33 percent overlap between the tools. Compared to

the set of bug finding tools, the ACC-tools in our test perform

better, with no false positives and no redundancy, but with

differences in output and quite a number of false negatives.

According to Binkley [10], source code analysis is impeded

by the complexities of modern programming languages.

Barowski and Cross [29] pay special attention to dependencies

on virtual members and on synthetic methods in their paper on

the extraction and use of class dependency information for

Java. Our study confirms that their special attention is justified,

since these types of dependencies (to super classes and inner

classes) are involved in many unreported dependencies and

violations.

Another topic in their paper is source file versus class file

based dependency extraction, and they describe some

differences between both forms. For their own tool, they

choose for class file based extraction. We do not object to this

choice, but we advise, based on our study, to include source

code in the analysis of ACC-tools (too), to optimize the

accuracy of the tool with respect to import statements, constant

variables and the exact position of a dependency in the source.

VIII. CONCLUSION

Architecture compliance checking (ACC) relies on the

support of tools to define modules and rules, to analyze the

code, to check the compliance, and to report violations to the

rules. In this study, we have investigated to which extent static

ACC-tools report violation messages and dependency

messages accurately. We classified dependency types, prepared

a benchmark test, and tested seven tools on the basis of the

benchmark test and the source of open source software of

Freemind.

A. Results Summary

We started our study with the following research question

in mind: How accurate do ACC-tools report dependencies and

violations against dependency rules? In the Introduction, this

question was decomposed into four sub questions, which are, at

the end of this study, answered as follows:

a) Do ACC tools find all the dependencies between

modules in the software? No, on the average 74 percent of the

dependency types in the benchmark test software was detected;

81 percent of the 25 direct types, and 57 percent of the 9

indirect types. All tools were able to detect dependencies

established by basic constructs, like method calls and type

declaration. However, the seven tools differ considerably in

their ability to detect all types of dependencies included in our

benchmark test. For instance, Structure101 and Sonargraph

Architect detected respectively 88 and 82 percent of all

dependency types, while SAVE detected 53 percent. The

Freemind test showed different results for the numbers of

detected dependencies in a module. Of the 109 identified

dependencies, Sonargraph Architect detected 83 percent,

SAVE 69 percent, and Structure101 67 percent.

b) Do ACC tools report all the violating dependencies in

the software (no false negatives)? Since no cases were noticed

during the tests, where a tool detected a violating dependency

but failed to report it, the answer to the previous sub question is

valid here too.

c) Do ACC tools report non-violating dependencies as

violations (false positives)? No, during the benchmark test, no

tool interpreted allowed dependencies in the program code as

violating dependencies. In addition, nearly no errors in the

violation messages were identified during the tests; only a few

reported violations contained incorrect information.

d) Do ACC tools report the exact type and location of

violations and dependencies? Violations to dependency rules

are reported by all tools at class level. At this level of

abstraction, one message may represent several actual

dependencies. Most tools are also able to report dependency

details, but not always precisely enough to localize

dependencies discretely. However, commercial tools provide

plug-ins for IDEs to localize violations and to edit the code.

B. Recommendations

Based on our experiments concerning the accuracy of

dependency detection and violation reporting, we present the

following recommendations to ACC-tool developers:

1) Enrich violation messages with an indication of the

severity of the violation; for instance the number of actual

dependencies represented by the violation message. This is

relevant information for architects and management.

2) Provide clear and precise dependency reports, which

show all the dependencies, and per dependency, the type and

the exact location. This is relevant information for developers.

Provide configuration options to sort the dependency messages

and browse them at different levels of aggregation.

3) Provide a balanced set of dependency types with clear

definitions to the user. Best standardize the terminology

concerning dependency types over tools.

4) Include source code in the analysis, to optimize the

accuracy of the tool with respect to import statements, constant

variables and the exact position of a dependency in the source.

Detecting import statements is especially beneficial, when the

detection of actual usage constructs fails.

We also have one recommendation to the users of the tools:

1) Be aware of the qualitative and quantitative limitations

of the tool’s output.

In conclusion, the seven tested tools provide useful support

for ACC, but all could improve the accuracy of the reported

dependencies and violations. Research on the performance and

improvement of dependency analysis is relevant for

practitioners and academics, since dependency analysis

supplies the data not only for architecture analysis and ACC,

but also for metrics and architecture restructuring advice.

Authors’ Final Version - © 2013 IEEE (ieeexplore.org), ICPC 2013, San Francisco, CA, USA

ACKNOWLEDGMENT

The authors would like to thank the students of the

specialization “Advanced Software Engineering” at the HU

University of Applied Sciences, but also colleagues and

reviewers for their contributions to this study.

REFERENCES

[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion

models,” ACM SIGSOFT Software Engineering Notes, vol. 20,

no. 4, pp. 18–28, Oct. 1995.

[2] L. de Silva and D. Balasubramaniam, “Controlling software

architecture erosion: A survey,” Journal of Systems and

Software, vol. 85, no. 1, pp. 132–151, Jan. 2012.

[3] J. Knodel and D. Popescu, “A Comparison of Static Architecture

Compliance Checking Approaches,” in Working IEEE/IFIP

Conference on Software Architecture, 2007, pp. 12–21.

[4] S. Ducasse and D. Pollet, “Software Architecture

Reconstruction: A Process-Oriented Taxonomy,” IEEE

Transactions on Software Engineering, vol. 35, no. 4, pp. 573–

591, Jul. 2009.

[5] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Das Chagas

Mendonca, “Static Architecture-Conformance Checking: An

Illustrative Overview,” IEEE Software, vol. 27, no. 5, pp. 82–89,

2010.

[6] J. Van Eyck, N. Boucké, A. Helleboogh, and T. Holvoet, “Using

code analysis tools for architectural conformance checking,” in

Proceeding of the 6th international workshop on SHAring and

Reusing architectural Knowledge - SHARK ’11, 2011.

[7] M. Gleirscher and D. Golubitskiy, “On the Benefit of

Automated Static Analysis for Small and Medium-Sized

Software Enterprises,” Software Quality. Process Automation In

Software Development, 2012.

[8] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and

challenges in software reverse engineering,” Communications of

the ACM, vol. 54, no. 4, p. 142, Apr. 2011.

[9] ISO/IEC, “25010 Systems and software engineering - System

and software product Quality Requirements and Evaluation

(SQuaRE) - System and software quality models,” 2011.

[10] D. Binkley, “Source Code Analysis: A Road Map,” in Future of

Software Engineering (FOSE ’07), 2007, pp. 104–119.

[11] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using

dependency models to manage complex software architecture,”

ACM Sigplan Notices, 2005.

[12] W. R. Bischofberger, J. Kühl, and S. Löffler, “Sotograph - A

Pragmatic Approach to Source Code Architecture Conformance

Checking,” in EWSA, 2004, vol. 3047, pp. 1–9.

[13] S. Huynh, Y. Cai, Y. Song, and K. Sullivan, “Automatic

modularity conformance checking,” in Proceedings of the 13th

international conference on Software engineering - ICSE ’08,

2008.

[14] F. Deissenboeck, L. Heinemann, B. Hummel, and E. Juergens,

“Flexible architecture conformance assessment with ConQAT,”

in 2010 ACMIEEE 32nd International Conference on Software

Engineering, 2010, vol. 2, no. 1, pp. 247–250.

[15] J. Adersberger and M. Philippsen, “ReflexML: UML-based

architecture-to-code traceability and consistency checking,” in

Proceedings of the 5th European conference on Software

architecture, 2011, pp. 344–359.

[16] T. Haitzer and U. Zdun, “DSL-based Support for Semi-

Automated Architectural Component Model Abstraction

Throughout the Software Lifecycle Categories and Subject

Descriptors,” in Proceedings of the 8th international ACM

SIGSOFT conference on Quality of Software Architectures,

2012, pp. 61–70.

[17] D. E. Perry and A. L. Wolf, “Foundations for the Study of

Software Architecture,” ACM SIGSOFT Software Engineering

Notes, vol. 17, pp. 40 – 52, 1992.

[18] P. Clements, F. Bachmann, L. Bass, D. Garlan, P. Merson, J.

Ivers, R. Little, and R. Nord, Documenting Software

Architectures: Views and Beyond. Pearson Education, 2010.

[19] A. Podgurski and L. A. Clarke, “A formal model of program

dependences and its implications for software testing,

debugging, and maintenance,” IEEE Transactions on Software

Engineering, vol. 16, no. 9, pp. 965–979, 1990.

[20] T. B. Callo Arias, P. Spek, and P. Avgeriou, “A practice-driven

systematic review of dependency analysis solutions,” Empirical

Software Engineering, vol. 16, no. 5, pp. 544–586, Mar. 2011.

[21] M. Feilkas, D. Ratiu, and E. Jurgens, “The loss of architectural

knowledge during system evolution: An industrial case study,”

in 2009 IEEE 17th International Conference on Program

Comprehension, 2009, pp. 188–197.

[22] A. J. Ko, B. A. Myers, S. Member, M. J. Coblenz, and H. H.

Aung, “An Exploratory Study of How Developers Seek, Relate,

and Collect Relevant Information during Software Maintenance

Tasks,” IEEE Transactions on Software Engineering, vol. 32,

no. 12, pp. 971–987, 2006.

[23] R. Terra and M. Valente, “A dependency constraint language to

manage object oriented software architectures,” Software:

Practice and Experience, no. June, pp. 1073–1094, 2009.

[24] J. Saraiva, S. Soares, and F. Castor, “Assessing the impact of

AOSD on layered software architectures,” in ECSA, 2010.

[25] J. A. Stafford and A. L. Wolf, “Architecture-level dependence

analysis for software systems,” International Jounal of Software

Engineering and Knowledge Engineering, vol. 11, no. 4, pp.

431–451, 2001.

[26] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,

and A. Wesslén, Experimentation in Software Engineering.

Springer, 2012.

[27] A. Sutton, J. I. Maletic, and K. Ohio, “Mappings for Accurately

Reverse Engineering UML Class Models from C ++,”

Information and Software Technology, vol. 49, no. 3, pp. 212–

229, 2007.

[28] N. Rutar, C. B. Almazan, and J. S. Foster, “A Comparison of

Bug Finding Tools for Java,” in 15th International Symposium

on Software Reliability Engineering, 2004, pp. 245–256.

[29] L. Barowski and J. Cross, “Extraction and use of class

dependency information for Java,” in Reverse Engineering,

2002. Ninth Working Conference on, 2002, pp. 309–315.

